913 resultados para MASS-SPECTROMETRY ANALYSIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simple geometries which are possible alternatives for the Orbitrap are studied in this paper. We have taken up for numerical investigation two segmented-electrode structures, ORB1 and ORB2, to mimic the electric field of the Orbitrap. In the ORB1, the inner spindle-like electrode and the outer barrel-like electrode of the Orbitrap have been replaced by 35 rings and 35 discs of fixed radii, respectively. In this structure two segmented end cap electrodes have been added. In this geometry, different potentials are applied to the different electrodes keeping top-bottom symmetry intact. In the second geometry, ORB2, the inner and outer electrodes of the Orbitrap were replaced by an approximate step structure which follows the profile of the Orbitrap electrodes. In the present study 45 steps have been used. In the ORB2, like the Orbitrap, the inner electrode is held at a negative potential and the outer electrode is at ground potential. For the purpose of comparing the performance of ORB1 and ORB2 with that of the Orbitrap, the following studies have been undertaken: (1) variation of electric potential, (2) computation of ion trajectories, (3) simulation of image currents. These studies have been carried out using both 2D and 3D Boundary Element Method (BEM), the 3D BEM was developed specifically for this study. It has been seen in these investigations that ORB1 and ORB2 have performance similar to that of the Orbitrap, with the performance of the ORB1 being seen to be marginally superior to that of the ORB2. It has been shown that with proper optimization, geometries containing far fewer electrodes can be used as mass analyzers. A novel technique of optimization of the electric field has been proposed with the objective of minimizing the dependence of axial frequency of ion motion on the initial position of an ion. The results on the optimization of 9 and 15 segmented-electrode traps having the same design as ORB1 show that it can provide accurate mass analysis. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we demonstrate how secondary ion mass spectrometry (SIMS) can be applied to ZnO nanowire structures for gold catalyst residue determination. Gold plays a significant role in determining the structural properties of such nanowires, with the location of the gold after growth being a strong indicator of the growth mechanism. For the material investigated here, we find that the gold remains at the substrate-nanowire interface. This was not anticipated as the usual growth mechanism associated with catalyst growth is of a vapour-liquid-solid (VLS) type. The results presented here favour a vapour-solid (VS) growth mechanism instead. Copyright © 2007 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cdc48/p97 is an essential, highly abundant hexameric member of the AAA (ATPase associated with various cellular activities) family. It has been linked to a variety of processes throughout the cell but it is best known for its role in the ubiquitin proteasome pathway. In this system it is believed that Cdc48 behaves as a segregase, transducing the chemical energy of ATP hydrolysis into mechanical force to separate ubiquitin-conjugated proteins from their tightly-bound partners.

Current models posit that Cdc48 is linked to its substrates through a variety of adaptor proteins, including a family of seven proteins (13 in humans) that contain a Cdc48-binding UBX domain. As such, due to the complexity of the network of adaptor proteins for which it serves as the hub, Cdc48/p97 has the potential to exert a profound influence on the ubiquitin proteasome pathway. However, the number of known substrates of Cdc48/p97 remains relatively small, and smaller still is the number of substrates that have been linked to a specific UBX domain protein. As such, the goal of this dissertation research has been to discover new substrates and better understand the functions of the Cdc48 network. With this objective in mind, we established a proteomic screen to assemble a catalog of candidate substrate/targets of the Ubx adaptor system.

Here we describe the implementation and optimization of a cutting-edge quantitative mass spectrometry method to measure relative changes in the Saccharomyces cerevisiae proteome. Utilizing this technology, and in order to better understand the breadth of function of Cdc48 and its adaptors, we then performed a global screen to identify accumulating ubiquitin conjugates in cdc48-3 and ubxΔ mutants. In this screen different ubx mutants exhibited reproducible patterns of conjugate accumulation that differed greatly from each other, pointing to various unexpected functional specializations of the individual Ubx proteins.

As validation of our mass spectrometry findings, we then examined in detail the endoplasmic-reticulum bound transcription factor Spt23, which we identified as a putative Ubx2 substrate. In these studies ubx2Δ cells were deficient in processing of Spt23 to its active p90 form, and in localizing p90 to the nucleus. Additionally, consistent with reduced processing of Spt23, ubx2Δ cells demonstrated a defect in expression of their target gene OLE1, a fatty acid desaturase. Overall, this work demonstrates the power of proteomics as a tool to identify new targets of various pathways and reveals Ubx2 as a key regulator lipid membrane biosynthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bio-orthogonal non-canonical amino acid tagging (BONCAT) is an analytical method that allows the selective analysis of the subset of newly synthesized cellular proteins produced in response to a biological stimulus. In BONCAT, cells are treated with the non-canonical amino acid L-azidohomoalanine (Aha), which is utilized in protein synthesis in place of methionine by wild-type translational machinery. Nascent, Aha-labeled proteins are selectively ligated to affinity tags for enrichment and subsequently identified via mass spectrometry. The work presented in this thesis exhibits advancements in and applications of the BONCAT technology that establishes it as an effective tool for analyzing proteome dynamics with time-resolved precision.

Chapter 1 introduces the BONCAT method and serves as an outline for the thesis as a whole. I discuss motivations behind the methodological advancements in Chapter 2 and the biological applications in Chapters 2 and 3.

Chapter 2 presents methodological developments that make BONCAT a proteomic tool capable of, in addition to identifying newly synthesized proteins, accurately quantifying rates of protein synthesis. I demonstrate that this quantitative BONCAT approach can measure proteome-wide patterns of protein synthesis at time scales inaccessible to alternative techniques.

In Chapter 3, I use BONCAT to study the biological function of the small RNA regulator CyaR in Escherichia coli. I correctly identify previously known CyaR targets, and validate several new CyaR targets, expanding the functional roles of the sRNA regulator.

In Chapter 4, I use BONCAT to measure the proteomic profile of the quorum sensing bacterium Vibrio harveyi during the time-dependent transition from individual- to group-behaviors. My analysis reveals new quorum-sensing-regulated proteins with diverse functions, including transcription factors, chemotaxis proteins, transport proteins, and proteins involved in iron homeostasis.

Overall, this work describes how to use BONCAT to perform quantitative, time-resolved proteomic analysis and demonstrates that these measurements can be used to study a broad range of biological processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Ubiquitination is known to regulate physiological neuronal functions as well as to be involved in a number of neuronal diseases. Several ubiquitin proteomic approaches have been developed during the last decade but, as they have been mostly applied to non-neuronal cell culture, very little is yet known about neuronal ubiquitination pathways in vivo. Methodology/Principal Findings Using an in vivo biotinylation strategy we have isolated and identified the ubiquitinated proteome in neurons both for the developing embryonic brain and for the adult eye of Drosophila melanogaster. Bioinformatic comparison of both datasets indicates a significant difference on the ubiquitin substrates, which logically correlates with the processes that are most active at each of the developmental stages. Detection within the isolated material of two ubiquitin E3 ligases, Parkin and Ube3a, indicates their ubiquitinating activity on the studied tissues. Further identification of the proteins that do accumulate upon interference with the proteasomal degradative pathway provides an indication of the proteins that are targeted for clearance in neurons. Last, we report the proof-of-principle validation of two lysine residues required for nSyb ubiquitination. Conclusions/Significance These data cast light on the differential and common ubiquitination pathways between the embryonic and adult neurons, and hence will contribute to the understanding of the mechanisms by which neuronal function is regulated. The in vivo biotinylation methodology described here complements other approaches for ubiquitome study and offers unique advantages, and is poised to provide further insight into disease mechanisms related to the ubiquitin proteasome system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Outer membrane proteins (OMPs) of bacteria are key molecules interacting with the host environment. Flavobacterium columnare, a pathogen-causing columnaris disease of fish worldwide, was studied in order to understand the composition of its OMPs. The sarcosine-insoluble membrane fraction of the OMPs was analysed using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) in combination with reverse-phase high-performance liquid chromatography-tandem mass spectrometry (RP-HPLC MS/MS). Thirty-six proteins were identified, including proteins involved in cell wall/membrane biogenesis, specific transport of various nutrients and in essential metabolism. The present study is the first report on the OMPs of F. columnare, and may serve as the basis for understanding the pathogenesis of the bacterium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for calibration of an audio-frequency (AF) ion trap mass spectrometer is described. The method is proposed to surmount the obstacle that there is a lack of a proper calibrant for mass spectrometers in the mass-to-charge ratio (m/z) range of 10(6) to 10(10). To calibrate such mass spectra, we determine the point of ejection, q(eject), on the stability diagram of the ion trap operated in a mass-selective axial instability mode. This is accomplished by measuring the radial secular frequencies (and therefore, the m/z value) of a single trapped particle using a light scattering method, followed by monitoring the action of particle ejection in real time to obtain the q(eject). A delayed ejection with q(eject) = 0.949 +/- 0.004 is found at a trap driving frequency of Ohm/2pi = 200-600Hz. Theoretical analysis for the origin of the delayed ejection indicates that the delay is predominantly resulted from the existence of multipole components in the fields due to trap imperfections. Inclusion of -3% of the octopole with respect to the basic quadrupole field can satisfactorily account for our observations. An m/z accuracy approaching 0.1% is attainable after proper calibration of the AF ion trap mass spectrometer. (Int J Mass Spectrom 214 (2002) 63-73) (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amphetamines including methamphetamine, 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine were separated and detected by CE using simultaneous electrochemical (EC) and electrochemiluminescence (ECL) detection (CE-EC/ ECL). Factors that influenced the separation and detection performance, such as the detection potential, the pH value and concentration of the running buffer, the separation voltage and the pH of the detection buffer, were investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, one- and two-dimensional gel electrophoresis combined with high resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) have been applied as powerful approaches for the proteome analysis of surfactant proteins SP-A and SP-D, including identification of structurally modified and truncation forms, in bronchoalveolar lavage fluid from patients with cystic fibrosis, chronic bronchitis and pulmonary alveolar proteinosis. Highly sensitive micro preparation techniques were developed for matrix-assisted laser desorption/ionization (MALDI) FT-ICR MS analysis which provided the identification of surfactant proteins at very low levels. Owing to the high resolution, FT-ICR MS was found to provide substantial advantages for the structural identification of surfactant proteins from complex biological matrices with high mass determination accuracy. Several protein bands corresponding to SP-A and SP-D were identified by MALDI-FT-ICR MS after electrophoretic separation by one- and two-dimensional gel electrophoresis, and provided the identification of structural modifications (hydroxy-proline) and degradation products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

beta-Adrenoceptors(beta-ARs) play a critical role in regulating cardiac functions under both physiological and pathological conditions. To further explore the mechanisms through which beta-ARs perform its actions, proteomic approaches were adopted to study the global protein patterns in cultured neonatal rat cardiomyocytes exposed to isoproterenol (ISO). A modified method, "Mirror Images in One Gel", was used to improve the reproducibility and resolution power of two-dimensional electrophoresis. A 2-DE map with a good reproducibility was obtained in which 1281 70 spots were detected and about 1191 +/- 54 spots were matched, with an average matching rate of 92.9%. Nine proteins with significant changes were identified by using peptide mass fingerprinting(PMF) data obtained via MALDI-MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sodium dodecyl sulfate(SDS) is a powerful solubilizing detergent which is often used during the separation of highly complex protein mixtures by one- or two-dimensional (2D) gel electrophoresis. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely used technique for mass spectrometric analysis of some protein molecules compared to other techniques. But the presence of SDS or some salts usually leads to signal deterioration when using MALDI-MS. A method for using nitrocellulose membrane as the solid-phase carrier combined with n-octyl-beta-D-glucopyranoside in the matrix highly enhances the sensitivity of the molecular mass determination of lysozyme. This technique has the advantage that the signal-to-noise of the molecular weight profile is improved compared with the mass spectrum and the profile is relatively easy to interpret.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using electrospray tandem mass spectrometry (ESI-MSn), the flavonoids obtained from leaves in Acanthopanax Senticosus Harms were analyzed. The typical colorimetric method and the ultroviolet spectrophotometry were also utilized for the determination of the content of total flavonoids. The analytical results showed that there was quercetin as well as its derivatives in leaves of acanthopanax senticosus harms and their content was as high as 37.25%.