959 resultados para MAGNETIC-RESONANCE-SPECTROSCOPY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Our aim was to evaluate a fluorescence-based enhanced-reality system to assess intestinal viability in a laparoscopic mesenteric ischemia model. MATERIALS AND METHODS: A small bowel loop was exposed, and 3 to 4 mesenteric vessels were clipped in 6 pigs. Indocyanine green (ICG) was administered intravenously 15 minutes later. The bowel was illuminated with an incoherent light source laparoscope (D-light-P, KarlStorz). The ICG fluorescence signal was analyzed with Ad Hoc imaging software (VR-RENDER), which provides a digital perfusion cartography that was superimposed to the intraoperative laparoscopic image [augmented reality (AR) synthesis]. Five regions of interest (ROIs) were marked under AR guidance (1, 2a-2b, 3a-3b corresponding to the ischemic, marginal, and vascularized zones, respectively). One hour later, capillary blood samples were obtained by puncturing the bowel serosa at the identified ROIs and lactates were measured using the EDGE analyzer. A surgical biopsy of each intestinal ROI was sent for mitochondrial respiratory rate assessment and for metabolites quantification. RESULTS: Mean capillary lactate levels were 3.98 (SD = 1.91) versus 1.05 (SD = 0.46) versus 0.74 (SD = 0.34) mmol/L at ROI 1 versus 2a-2b (P = 0.0001) versus 3a-3b (P = 0.0001), respectively. Mean maximal mitochondrial respiratory rate was 104.4 (±21.58) pmolO2/second/mg at the ROI 1 versus 191.1 ± 14.48 (2b, P = 0.03) versus 180.4 ± 16.71 (3a, P = 0.02) versus 199.2 ± 25.21 (3b, P = 0.02). Alanine, choline, ethanolamine, glucose, lactate, myoinositol, phosphocholine, sylloinositol, and valine showed statistically significant different concentrations between ischemic and nonischemic segments. CONCLUSIONS: Fluorescence-based AR may effectively detect the boundary between the ischemic and the vascularized zones in this experimental model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determination of brain glucose transport kinetics in vivo at steady-state typically does not allow distinguishing apparent maximum transport rate (T(max)) from cerebral consumption rate. Using a four-state conformational model of glucose transport, we show that simultaneous dynamic measurement of brain and plasma glucose concentrations provide enough information for independent and reliable determination of the two rates. In addition, although dynamic glucose homeostasis can be described with a reversible Michaelis-Menten model, which is implicit to the large iso-inhibition constant (K(ii)) relative to physiological brain glucose content, we found that the apparent affinity constant (K(t)) was better determined with the four-state conformational model of glucose transport than with any of the other models tested. Furthermore, we confirmed the utility of the present method to determine glucose transport and consumption by analysing the modulation of both glucose transport and consumption by anaesthesia conditions that modify cerebral activity. In particular, deep thiopental anaesthesia caused a significant reduction of both T(max) and cerebral metabolic rate for glucose consumption. In conclusion, dynamic measurement of brain glucose in vivo in function of plasma glucose allows robust determination of both glucose uptake and consumption kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Glutathione (GSH) is the major cellular redox-regulator and antioxidant. Redox-imbalance due to genetically impaired GSH synthesis is among the risk factors for schizophrenia. Here we used a mouse model with chronic GSH deficit induced by knockout (KO) of the key GSH-synthesizing enzyme, glutamate-cysteine ligase modulatory subunit (GCLM).¦METHODS: With high-resolution magnetic resonance spectroscopy at 14.1 T, we determined the neurochemical profile of GCLM-KO, heterozygous, and wild-type mice in anterior cortex throughout development in a longitudinal study design.¦RESULTS: Chronic GSH deficit was accompanied by an elevation of glutamine (Gln), glutamate (Glu), Gln/Glu, N-acetylaspartate, myo-Inositol, lactate, and alanine. Changes were predominantly present at prepubertal ages (postnatal days 20 and 30). Treatment with N-acetylcysteine from gestation on normalized most neurochemical alterations to wild-type level.¦CONCLUSIONS: Changes observed in GCLM-KO anterior cortex, notably the increase in Gln, Glu, and Gln/Glu, were similar to those reported in early schizophrenia, emphasizing the link between redox imbalance and the disease and validating the model. The data also highlight the prepubertal period as a sensitive time for redox-related neurochemical changes and demonstrate beneficial effects of early N-acetylcysteine treatment. Moreover, the data demonstrate the translational value of magnetic resonance spectroscopy to study brain disease in preclinical models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Lower ambulatory performance with aging may be related to a reduced oxidative capacity within skeletal muscle. This study examined the associations between skeletal muscle mitochondrial capacity and efficiency with walking performance in a group of older adults. METHODS: Thirty-seven older adults (mean age 78 years; 21 men and 16 women) completed an aerobic capacity (VO peak) test and measurement of preferred walking speed over 400 m. Maximal coupled (State 3; St3) mitochondrial respiration was determined by high-resolution respirometry in saponin-permeabilized myofibers obtained from percutanous biopsies of vastus lateralis (n = 22). Maximal phosphorylation capacity (ATP) of vastus lateralis was determined in vivo by P magnetic resonance spectroscopy (n = 30). Quadriceps contractile volume was determined by magnetic resonance imaging. Mitochondrial efficiency (max ATP production/max O consumption) was characterized using ATP per St3 respiration (ATP/St3). RESULTS: In vitro St3 respiration was significantly correlated with in vivo ATP (r = .47, p = .004). Total oxidative capacity of the quadriceps (St3*quadriceps contractile volume) was a determinant of VO peak (r = .33, p = .006). ATP (r = .158, p = .03) and VO peak (r = .475, p < .0001) were correlated with preferred walking speed. Inclusion of both ATP/St3 and VO peak in a multiple linear regression model improved the prediction of preferred walking speed (r = .647, p < .0001), suggesting that mitochondrial efficiency is an important determinant for preferred walking speed. CONCLUSIONS: Lower mitochondrial capacity and efficiency were both associated with slower walking speed within a group of older participants with a wide range of function. In addition to aerobic capacity, lower mitochondrial capacity and efficiency likely play roles in slowing gait speed with age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proton magnetic resonance spectroscopy (1H-MRS) has been used in a number of studies to noninvasively assess the temporal changes of lactate in the activated human brain. However, the results have not been consistent. The aim of the present study was to test the sensitivity of 1H-MRS during functional experiments at the highest magnetic field currently available for human studies (7 T). Stability and reproducibility of the measurements were evaluated from LCModel analysis of time series of spectra measured during a visual stimulation paradigm and by examination of the difference between spectra obtained at rest and during activation. The sensitivity threshold to detect concentration changes was 0.2 micromol/g for most of the quantified metabolites. The possible variations of metabolite concentrations during visual stimulation were within the same range (+/-0.2 micromol/g). In addition, the influence of a small line-narrowing effect due to the blood oxygenation level-dependent (BOLD) T2* changes on the estimated concentrations was simulated. Quantification of metabolites was, in general, not affected beyond 1% by line-width changes within 0.5 Hz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(from the journal abstract) Schizophrenia, a major psychiatric disease, affects individuals in the centre of their personality. Its aetiology is not clearly established. In this review, we will present evidence that patients suffering of schizophrenia present a brain deficit in glutathione, a major endogenous redox regulator and antioxidant. We will also show that, in experimental models, a decrease in glutathione, particularly during development, induces morphological, electrophysiological and behavioural anomalies consistent with those observed in the disease. In the cerebrospinal fluid of drug-naive schizophrenics, glutathione level was decreased by 27% and its direct metabolite of glutathione by 16%. Glutathione level in prefrontal cortex of patients, measured by magnetic resonance spectroscopy, was 52% lower than in controls. Patients' fibroblasts reveal a decrease in mRNA levels of the two glutathione synthesising enzymes, glutamatecysteine ligase modulatory subunit (GCLM) and glutathione synthetase. GCLM expression level in fibroblasts correlates negatively with symptoms severity. Glutathione is an important endogenous redox regulator and neuroactive substance. It is protecting cells from damage by reactive oxygen species generated, among others, by dopamine metabolism. A glutathione deficit-induced oxidative stress would lead to lipid peroxidation and micro-lesions at the level of dendritic spines, a synaptic damage responsible for abnormal nervous connections or structural disconnectivity. On the other hand, a glutathione deficit could also lead to a functional disconnectivity by depressing NMDA neurotransmission, in analogy to phencyclidine effects. Present experimental data are consistent with the proposed hypothesis: decreasing pharmacologically glutathione level in experimental models, with or without blocking dopamine (DA) uptake (GBR12909), induces morphological, electrophysiological and behavioural changes similar to those observed in patients. In summary, a deficit of glutathione and/or glutathione-related enzymes during early development would lead to both a functional and a structural disconnectivity, which could be at the basis of some perceptive, cognitive and behavioural troubles of the disease. It could constitute a major vulnerability factor for schizophrenia. Attempts to restore physiological glutathione functions could open new therapeutic avenues. This translational research, made possible by a close interaction between clinicians and neuroscientists, should also pave the way to the identification of biological markers for schizophrenia. In turn, they should allow early diagnostic and hopefully preventive intervention to this devastating disease. (PsycINFO Database Record (c) 2005 APA, all rights reserved)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to develop an alternative methodology to study and characterize the phosphate crystalline properties, directly associated with solubility and plant availability, in biochar from swine bones. Some phosphate symmetry properties of pyrolyzed swine bones were established, using solid state nuclear magnetic resonance spectroscopy, principal component analysis, and multivariate curve resolution analysis, on four pyrolyzed samples at different carbonization intensities. Increasing carbonization parameters (temperature or residence time) generates diverse phosphate structures, increasing their symmetry and decreasing the crossed polarizability of the pair ¹H-31P, producing phosphates with, probably, lower solubility than the ones produced at lower carbonization intensity. Additionally, a new methodology is being developed to study and characterize phosphate crystalline properties directly associated with phosphate solubility and availability to plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In common with many other plasma membrane glycoproteins of eukaryotic origin, the promastigote surface protease (PSP) of the protozoan parasite Leishmania contains a glycosyl-phosphatidylinositol (GPI) membrane anchor. The GPI anchor of Leishmania major PSP was purified following proteolysis of the PSP and analyzed by two-dimensional 1H-1H NMR, compositional and methylation linkage analyses, chemical and enzymatic modifications, and amino acid sequencing. From these results, the structure of the GPI-containing peptide was found to be Asp-Gly-Gly-Asn-ethanolamine-PO4-6Man alpha 1-6Man alpha 1-4GlcN alpha 1-6myo-inositol-1-PO4-(1-alkyl-2-acyl-glycerol). The glycan structure is identical to the conserved glycan core regions of the GPI anchor of Trypanosoma brucei variant surface glycoprotein and rat brain Thy-1 antigen, supporting the notion that this portion of GPIs are highly conserved. The phosphatidylinositol moiety of the PSP anchor is unusual, containing a fully saturated, unbranched 1-O-alkyl chain (mainly C24:0) and a mixture of fully saturated unbranched 2-O-acyl chains (C12:0, C14:0, C16:0, and C18:0). This lipid composition differs significantly from those of the GPIs of T. brucei variant surface glycoprotein and mammalian erythrocyte acetylcholinesterase but is similar to that of a family of glycosylated phosphoinositides found uniquely in Leishmania.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, considerable research has focused on the biological effect of endocrine-disrupting chemicals. Bisphenol A (BPA) has been implicated as an endocrine-disrupting chemical (EDC) due to its ability to mimic the action of endogenous estrogenic hormones. The aim of this study was to assess the effect of perinatal exposure to BPA on cerebral structural development and metabolism after birth. BPA (1mg/l) was administered in the drinking water of pregnant dams from day 6 of gestation until pup weaning. At postnatal day 20, in vivo metabolite concentrations in the rat pup hippocampus were measured using high field proton magnetic resonance spectroscopy. Further, brain was assessed histologically for growth, gross morphology, glial and neuronal development and extent of myelination. Localized proton magnetic resonance spectroscopy ((1)H MRS) showed in the BPA-exposed rat a significant increase in glutamate concentration in the hippocampus as well as in the Glu/Asp ratio. Interestingly these two metabolites are metabolically linked together in the malate-aspartate metabolic shuttle. Quantitative histological analysis revealed that the density of NeuN-positive neurons in the hippocampus was decreased in the BPA-treated offspring when compared to controls. Conversely, the density of GFAP-positive astrocytes in the cingulum was increased in BPA-treated offspring. In conclusion, exposure to low-dose BPA during gestation and lactation leads to significant changes in the Glu/Asp ratio in the hippocampus, which may reflect impaired mitochondrial function and also result in neuronal and glial developmental alterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple non-targeted differential HPLC-APCI/MS approach has been developed in order to survey metabolome modifications that occur in the leaves of Arabidopsis thaliana following wound-induced stress. The wound-induced accumulation of metabolites, particularly oxylipins, was evaluated by HPLC-MS analysis of crude leaf extracts. A generic, rapid and reproducible pressure liquid extraction procedure was developed for the analysis of restricted leaf samples without the need for specific sample preparation. The presence of various oxylipins was determined by head-to-head comparison of the HPLC-MS data, filtered with a component detection algorithm, and automatically compared with the aid of software searching for small differences in similar HPLC-MS profiles. Repeatability was verified in several specimens belonging to different series. Wound-inducible jasmonates were efficiently highlighted by this non-targeted approach without the need for complex sample preparation as is the case for the 'oxylipin signature' procedure based on GC-MS. Furthermore this HPLC-MS screening technique allowed the isolation of induced compounds for further characterisation by capillary-scale NMR (CapNMR) after HPLC scale-up. In this paper, the screening method is described and applied to illustrate its potential for monitoring polar and non-polar stress-induced constituents as well as its use in combination with CapNMR for the structural assignment of wound-induced compounds of interest

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Both nutritional and genetic factors are involved in the pathogenesis of nonalcoholic fatty liver disease and insulin resistance. OBJECTIVE: The aim was to assess the effects of fructose, a potent stimulator of hepatic de novo lipogenesis, on intrahepatocellular lipids (IHCLs) and insulin sensitivity in healthy offspring of patients with type 2 diabetes (OffT2D)--a subgroup of individuals prone to metabolic disorders. DESIGN: Sixteen male OffT2D and 8 control subjects were studied in a crossover design after either a 7-d isocaloric diet or a hypercaloric high-fructose diet (3.5 g x kg FFM(-1) x d(-1), +35% energy intake). Hepatic and whole-body insulin sensitivity were assessed with a 2-step hyperinsulinemic euglycemic clamp (0.3 and 1.0 mU x kg(-1) x min(-1)), together with 6,6-[2H2]glucose. IHCLs and intramyocellular lipids (IMCLs) were measured by 1H-magnetic resonance spectroscopy. RESULTS: The OffT2D group had significantly (P < 0.05) higher IHCLs (+94%), total triacylglycerols (+35%), and lower whole-body insulin sensitivity (-27%) than did the control group. The high-fructose diet significantly increased IHCLs (control: +76%; OffT2D: +79%), IMCLs (control: +47%; OffT2D: +24%), VLDL-triacylglycerols (control: +51%; OffT2D: +110%), and fasting hepatic glucose output (control: +4%; OffT2D: +5%). Furthermore, the effects of fructose on VLDL-triacylglycerols were higher in the OffT2D group (group x diet interaction: P < 0.05). CONCLUSIONS: A 7-d high-fructose diet increased ectopic lipid deposition in liver and muscle and fasting VLDL-triacylglycerols and decreased hepatic insulin sensitivity. Fructose-induced alterations in VLDL-triacylglycerols appeared to be of greater magnitude in the OffT2D group, which suggests that these individuals may be more prone to developing dyslipidemia when challenged by high fructose intakes. This trial was registered at clinicaltrials.gov as NCT00523562.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the role of early energetic abnormalities in the subsequent development of heart failure, we performed serial in vivo combined magnetic resonance imaging (MRI) and (31)P magnetic resonance spectroscopy (MRS) studies in mice that underwent pressure-overload following transverse aorta constriction (TAC). After 3 wk of TAC, a significant increase in left ventricular (LV) mass (74 +/- 4 vs. 140 +/- 26 mg, control vs. TAC, respectively; P < 0.000005), size [end-diastolic volume (EDV): 48 +/- 3 vs. 61 +/- 8 microl; P < 0.005], and contractile dysfunction [ejection fraction (EF): 62 +/- 4 vs. 38 +/- 10%; P < 0.000005] was observed, as well as depressed cardiac energetics (PCr/ATP: 2.0 +/- 0.1 vs. 1.3 +/- 0.4, P < 0.0005) measured by combined MRI/MRS. After an additional 3 wk, LV mass (140 +/- 26 vs. 167 +/- 36 mg; P < 0.01) and cavity size (EDV: 61 +/- 8 vs. 76 +/- 8 microl; P < 0.001) increased further, but there was no additional decline in PCr/ATP or EF. Cardiac PCr/ATP correlated inversely with end-systolic volume and directly with EF at 6 wk but not at 3 wk, suggesting a role of sustained energetic abnormalities in evolving chamber dysfunction and remodeling. Indeed, reduced cardiac PCr/ATP observed at 3 wk strongly correlated with changes in EDV that developed over the ensuing 3 wk. These data suggest that abnormal energetics due to pressure overload predict subsequent LV remodeling and dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

De tout temps, hommes et femmes ont cherché par tous les moyens à développer, préserver ou recouvrer leurs propres capacités sexuelles mais également à stimuler le désir du partenaire. L?utilisation d?aphrodisiaques naturels a été l?un des recours les plus répandus. De nos jours, la commercialisation de nouvelles "love drugs" de synthèse, e.g. Viagra®, Cialis®, Levitra®, a remis au goût du jour les aphrodisiaques classiques et à relancer la recherche sur des molécules nouvelles. La pratique croissante de l?automédication, le matraquage publicitaire sur les aphrodisiaques naturels, la prolifération sur le marché de compléments alimentaires non contrôlés et l?absence de véritable législation accroissent les risques qui pèsent sur la santé publique. Dans le but d?évaluer les risques potentiels sur le consommateur de produits aphrodisiaques commercialisés, le développement et la validation d?une méthode rapide d?analyse qualitative et quantitative de la yohimbine dans ces préparations du marché sont exposés dans la première partie de ce travail. La yohimbine est un antagoniste ?2-adrénocepteur du système nerveux central et périphérique, elle est employée depuis plus d?un siècle dans le traitement des dysfonctionnements érectiles. Cette méthode analytique utilise la chromatographie liquide couplée à l?ultraviolet et à la spectrométrie de masse (LC-UV-MS) et au total, vingt préparations aphrodisiaques ont été étudiées. La dose journalière de yohimbine mesurée s?est révélée très variable selon les produits puisqu?elle varie de 1.32 à 23.16 mg. La seconde partie de ce travail concerne l?étude phytochimique et pharmacologique d?Erythroxylum vacciniifolium Mart. (Erythroxylaceae), une plante, appelée localement catuaba, utilisée dans la médecine traditionnelle brésilienne comme tonique et aphrodisiaque. Dans un premier temps, l?extrait alcaloïdique a été analysé par chromatographie liquide haute performance (HPLC) couplée soit à un détecteur UV à barrette d?iode (LC-UV-DAD), soit à un spectromètre de masse (LC-MS), ou soit à un spectromètre de résonance magnétique nucléaire (LC-RMN). L?interprétation de ces données spectrales enregistrées en ligne a permis d?obtenir des informations structurales et d?identifier partiellement près de 24 alcaloïdes appartenant à la classe des tropanes et potentiellement originaux. Par des méthodes classiques de chromatographie liquide sur l?extrait alcaloïdique de la plante, dix sept tropanes nouveaux ont ensuite été isolés dont les catuabines et leurs dérivés, et les vaccinines. Tous ces composés sont des tropane-diols ou triols estérifiés par au moins un groupe acide 1-méthyl-1H-pyrrole-2-carboxylique. Un de ces composés a été identifié comme un tropane N-oxyde. Toutes les structures ont été déterminées par spectrométrie de masse haute résolution et spectroscopie RMN multi-dimensionnelle. Parmi les nombreux tests biologiques réalisés sur ces tropanes, seuls les tests de cytotoxicité se sont révélés faiblement positifs pour certains de ces composés.<br/><br/>Throughout the ages, men and women have incessantly pursued every means to increase, preserve or recapture their sexual capacity, or to stimulate the sexual desire of selected individuals. One of the most recurrent methods has been the use of natural aphrodisiacs. Nowadays, the commercialization of new synthetic "love drugs", e.g. Viagra®, Cialis® and Levitra®, has fascinated the public interest and has led to a reassessment of classical aphrodisiacs and to the search for new ones. The practice of self-medication by an increasing number of patients, the incessant aggressive advertising of these herbal aphrodisiacs, the invasion of the medicinal market with uncontrolled dietary supplements and the absence of real directives amplifies the potential health hazards to the community. In order to evaluate the possible risks of commercialized aphrodisiac products on consumer health, the development and validation of a rapid qualitative and quantitative method for the analysis of yohimbine in these products, is reported in the first part of the present work. Yohimbine, a pharmacologically well-characterized ?2-adrenoceptor antagonist with activity in the central and peripheral nervous system, has been used for over a century in the treatment of erectile dysfunction. The analytical method is based on liquid chromatography coupled with ultraviolet and mass spectrometry (LC-UV-MS) and in total, 20 commercially-available aphrodisiac preparations were analyzed. The amount of yohimbine measured and expressed as the maximal dose per day suggested on product labels ranged from 1.32 to 23.16 mg. The second part of this work involved the phytochemical and pharmacological investigation of Erythroxylum vacciniifolium Mart. (Erythroxylaceae), a plant used in Brazilian traditional medicine as an aphrodisiac and tonic, and locally known as catuaba. With the aim of obtaining preliminary structure information on-line, the alkaloid extract was analyzed by high performance liquid chromatography (HPLC) coupled to diode array UV detection (LC-UVDAD), to mass spectrometry (LC-MS) and to nuclear magnetic resonance spectroscopy (LCNMR). Interpretation of on-line spectroscopic data led to structure elucidation and partial identification of 24 potentially original alkaloids bearing the same tropane skeleton. Seventeen new tropane alkaloids were then isolated from the alkaloid extract of the plant, including catuabines D to I, their derivatives and vaccinines A and B. All compounds were elucidated as tropane-diol or -triol alkaloids esterified by at least one 1-methyl-1H-pyrrole-2-carboxylic acid. One of the isolated compounds was identified as a tropane alkaloid N-oxide. Their structures were determined by high resolution mass spectrometry and multi-dimensional NMR spectroscopy. Among the numerous bioassays undertaken, only the cytotoxicity tests exhibited a weak positive activity of certain compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given their high sensitivity and ability to limit the field of view (FOV), surface coils are often used in magnetic resonance spectroscopy (MRS) and imaging (MRI). A major downside of surface coils is their inherent radiofrequency (RF) B1 heterogeneity across the FOV, decreasing with increasing distance from the coil and giving rise to image distortions due to non-uniform spatial responses. A robust way to compensate for B1 inhomogeneities is to employ adiabatic inversion pulses, yet these are not well adapted to all imaging sequences - including to single-shot approaches like echo planar imaging (EPI). Hybrid spatiotemporal encoding (SPEN) sequences relying on frequency-swept pulses provide another ultrafast MRI alternative, that could help solve this problem thanks to their built-in heterogeneous spatial manipulations. This study explores how this intrinsic SPEN-based spatial discrimination, could be used to compensate for the B1 inhomogeneities inherent to surface coils. Experiments carried out in both phantoms and in vivo rat brains demonstrate that, by suitably modulating the amplitude of a SPEN chirp pulse that progressively excites the spins in a direction normal to the coil, it is possible to compensate for the RF transmit inhomogeneities and thus improve sensitivity and image fidelity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alterations in the hepatic lipid content (HLC) and fatty acid composition are associated with disruptions in whole body metabolism, both in humans and in rodent models, and can be non-invasively assessed by (1)H-MRS in vivo. We used (1)H-MRS to characterize the hepatic fatty-acyl chains of healthy mice and to follow changes caused by streptozotocin (STZ) injection. Using STEAM at 14.1 T with an ultra-short TE of 2.8 ms, confounding effects from T2 relaxation and J-coupling were avoided, allowing for accurate estimations of the contribution of unsaturated (UFA), saturated (SFA), mono-unsaturated (MUFA) and poly-unsaturated (PUFA) fatty-acyl chains, number of double bonds, PU bonds and mean chain length. Compared with in vivo (1) H-MRS, high resolution NMR performed in vitro in hepatic lipid extracts reported longer fatty-acyl chains (18 versus 15 carbons) with a lower contribution from UFA (61 ± 1% versus 80 ± 5%) but a higher number of PU bonds per UFA (1.39 ± 0.03 versus 0.58 ± 0.08), driven by the presence of membrane species in the extracts. STZ injection caused a decrease of HLC (from 1.7 ± 0.3% to 0.7 ± 0.1%), an increase in the contribution of SFA (from 21 ± 2% to 45 ± 6%) and a reduction of the mean length (from 15 to 13 carbons) of cytosolic fatty-acyl chains. In addition, SFAs were also likely to have increased in membrane lipids of STZ-induced diabetic mice, along with a decrease of the mean chain length. These studies show the applicability of (1)H-MRS in vivo to monitor changes in the composition of the hepatic fatty-acyl chains in mice even when they exhibit reduced HLC, pointing to the value of this methodology to evaluate lipid-lowering interventions in the scope of metabolic disorders.