992 resultados para Méthode de Monte Carlo


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work focuses the attention on the skew-symmetry index as a measure of social reciprocity. This index is based on the correspondence between the amount of behaviour that each individual addresses to its partners and what it receives from them in return. Although the skew-symmetry index enables researchers to describe social groups, statistical inferential tests are required. The main aim of the present study is to propose an overall statistical technique for testing symmetry in experimental conditions, calculating the skew-symmetry statistic (Φ) at group level. Sampling distributions for the skew- symmetry statistic have been estimated by means of a Monte Carlo simulation in order to allow researchers to make statistical decisions. Furthermore, this study will allow researchers to choose the optimal experimental conditions for carrying out their research, as the power of the statistical test has been estimated. This statistical test could be used in experimental social psychology studies in which researchers may control the group size and the number of interactions within dyads.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study discusses retention criteria for principal components analysis (PCA) applied to Likert scale items typical in psychological questionnaires. The main aim is to recommend applied researchers to restrain from relying only on the eigenvalue-than-one criterion; alternative procedures are suggested for adjusting for sampling error. An additional objective is to add evidence on the consequences of applying this rule when PCA is used with discrete variables. The experimental conditions were studied by means of Monte Carlo sampling including several sample sizes, different number of variables and answer alternatives, and four non-normal distributions. The results suggest that even when all the items and thus the underlying dimensions are independent, eigenvalues greater than one are frequent and they can explain up to 80% of the variance in data, meeting the empirical criterion. The consequences of using Kaiser"s rule are illustrated with a clinical psychology example. The size of the eigenvalues resulted to be a function of the sample size and the number of variables, which is also the case for parallel analysis as previous research shows. To enhance the application of alternative criteria, an R package was developed for deciding the number of principal components to retain by means of confidence intervals constructed about the eigenvalues corresponding to lack of relationship between discrete variables.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper examines statistical analysis of social reciprocity at group, dyadic, and individual levels. Given that testing statistical hypotheses regarding social reciprocity can be also of interest, a statistical procedure based on Monte Carlo sampling has been developed and implemented in R in order to allow social researchers to describe groups and make statistical decisions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the first part of the study, nine estimators of the first-order autoregressive parameter are reviewed and a new estimator is proposed. The relationships and discrepancies between the estimators are discussed in order to achieve a clear differentiation. In the second part of the study, the precision in the estimation of autocorrelation is studied. The performance of the ten lag-one autocorrelation estimators is compared in terms of Mean Square Error (combining bias and variance) using data series generated by Monte Carlo simulation. The results show that there is not a single optimal estimator for all conditions, suggesting that the estimator ought to be chosen according to sample size and to the information available of the possible direction of the serial dependence. Additionally, the probability of labelling an actually existing autocorrelation as statistically significant is explored using Monte Carlo sampling. The power estimates obtained are quite similar among the tests associated with the different estimators. These estimates evidence the small probability of detecting autocorrelation in series with less than 20 measurement times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

If single case experimental designs are to be used to establish guidelines for evidence-based interventions in clinical and educational settings, numerical values that reflect treatment effect sizes are required. The present study compares four recently developed procedures for quantifying the magnitude of intervention effect using data with known characteristics. Monte Carlo methods were used to generate AB designs data with potential confounding variables (serial dependence, linear and curvilinear trend, and heteroscedasticity between phases) and two types of treatment effect (level and slope change). The results suggest that data features are important for choosing the appropriate procedure and, thus, inspecting the graphed data visually is a necessary initial stage. In the presence of serial dependence or a change in data variability, the Nonoverlap of All Pairs (NAP) and the Slope and Level Change (SLC) were the only techniques of the four examined that performed adequately. Introducing a data correction step in NAP renders it unaffected by linear trend, as is also the case for the Percentage of Nonoverlapping Corrected Data and SLC. The performance of these techniques indicates that professionals" judgments concerning treatment effectiveness can be readily complemented by both visual and statistical analyses. A flowchart to guide selection of techniques according to the data characteristics identified by visual inspection is provided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geophysical methods have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, time-lapse geophysical data, when coupled with a hydrological model and inverted stochastically, may allow for the effective estimation of subsurface hydraulic parameters and their corresponding uncertainties. In this study, we use a Bayesian Markov-chain-Monte-Carlo (MCMC) inversion approach to investigate how much information regarding vadose zone hydraulic properties can be retrieved from time-lapse crosshole GPR data collected at the Arrenaes field site in Denmark during a forced infiltration experiment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Compartmental and physiologically based toxicokinetic modeling coupled with Monte Carlo simulation were used to quantify the impact of biological variability (physiological, biochemical, and anatomic parameters) on the values of a series of bio-indicators of metal and organic industrial chemical exposures. A variability extent index and the main parameters affecting biological indicators were identified. Results show a large diversity in interindividual variability for the different categories of biological indicators examined. Measurement of the unchanged substance in blood, alveolar air, or urine is much less variable than the measurement of metabolites, both in blood and urine. In most cases, the alveolar flow and cardiac output were identified as the prime parameters determining biological variability, thus suggesting the importance of workload intensity on absorbed dose for inhaled chemicals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper examines statistical analysis of social reciprocity, that is, the balance between addressing and receiving behaviour in social interactions. Specifically, it focuses on the measurement of social reciprocity by means of directionality and skew-symmetry statistics at different levels. Two statistics have been used as overall measures of social reciprocity at group level: the directional consistency and the skew-symmetry statistics. Furthermore, the skew-symmetry statistic allows social researchers to obtain complementary information at dyadic and individual levels. However, having computed these measures, social researchers may be interested in testing statistical hypotheses regarding social reciprocity. For this reason, it has been developed a statistical procedure, based on Monte Carlo sampling, in order to allow social researchers to describe groups and make statistical decisions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo deste trabalho foi descrever um procedimento de modelagem de fertilidade do solo que integra propriedades químicas do solo utilizando-se do método de Monte Carlo. A espacialização das propriedades químicas foi obtida por procedimento geoestatístico de simulação estocástica, com modelagem das incertezas associadas às estimativas. As incertezas das propriedades químicas foram propagadas para o modelo de fertilidade resultante, possibilitando a geração de mapas de fertilidade condicionados a níveis de risco prédefinidos. O método aqui apresentado é ilustrado por um estudo de caso de fertilidade para cultura de soja, no Estado de Santa Catarina, considerando as seguintes propriedades químicas do solo: alumínio trocável, potássio e capacidade de troca catiônica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo deste trabalho foi simular a produtividade potencial da cultura de milho, pelo método de Monte Carlo, utilizando um modelo agrometeorológico estocástico. O experimento foi conduzido em Piracicaba, SP, a 22º42'30''S, 47º38'30''W, e altitude de 546 m, o clima da região é do tipo Cwa (tropical úmido). Foram utilizados os valores médios diários de temperatura (de 1917 a 2002) e radiação solar global (de 1978 a 2002). Para comparar os dados reais com os simulados, foram utilizados índices de desempenho estatístico. Observou-se que os modelos probabilísticos, desenvolvidos para a simulação de dados médios diários de temperatura e de radiação solar global, geraram valores semelhantes aos observados por meio da distribuição triangular, a qual pode ser utilizada em modelo estocástico, para previsão da produtividade potencial de milho, nas diferentes épocas de semeadura.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the considerable evidence showing that dispersal between habitat patches is often asymmetric, most of the metapopulation models assume symmetric dispersal. In this paper, we develop a Monte Carlo simulation model to quantify the effect of asymmetric dispersal on metapopulation persistence. Our results suggest that metapopulation extinctions are more likely when dispersal is asymmetric. Metapopulation viability in systems with symmetric dispersal mirrors results from a mean field approximation, where the system persists if the expected per patch colonization probability exceeds the expected per patch local extinction rate. For asymmetric cases, the mean field approximation underestimates the number of patches necessary for maintaining population persistence. If we use a model assuming symmetric dispersal when dispersal is actually asymmetric, the estimation of metapopulation persistence is wrong in more than 50% of the cases. Metapopulation viability depends on patch connectivity in symmetric systems, whereas in the asymmetric case the number of patches is more important. These results have important implications for managing spatially structured populations, when asymmetric dispersal may occur. Future metapopulation models should account for asymmetric dispersal, while empirical work is needed to quantify the patterns and the consequences of asymmetric dispersal in natural metapopulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper develops an approach to rank testing that nests all existing rank tests andsimplifies their asymptotics. The approach is based on the fact that implicit in every ranktest there are estimators of the null spaces of the matrix in question. The approach yieldsmany new insights about the behavior of rank testing statistics under the null as well as localand global alternatives in both the standard and the cointegration setting. The approach alsosuggests many new rank tests based on alternative estimates of the null spaces as well as thenew fixed-b theory. A brief Monte Carlo study illustrates the results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantifying the spatial configuration of hydraulic conductivity (K) in heterogeneous geological environments is essential for accurate predictions of contaminant transport, but is difficult because of the inherent limitations in resolution and coverage associated with traditional hydrological measurements. To address this issue, we consider crosshole and surface-based electrical resistivity geophysical measurements, collected in time during a saline tracer experiment. We use a Bayesian Markov-chain-Monte-Carlo (McMC) methodology to jointly invert the dynamic resistivity data, together with borehole tracer concentration data, to generate multiple posterior realizations of K that are consistent with all available information. We do this within a coupled inversion framework, whereby the geophysical and hydrological forward models are linked through an uncertain relationship between electrical resistivity and concentration. To minimize computational expense, a facies-based subsurface parameterization is developed. The Bayesian-McMC methodology allows us to explore the potential benefits of including the geophysical data into the inverse problem by examining their effect on our ability to identify fast flowpaths in the subsurface, and their impact on hydrological prediction uncertainty. Using a complex, geostatistically generated, two-dimensional numerical example representative of a fluvial environment, we demonstrate that flow model calibration is improved and prediction error is decreased when the electrical resistivity data are included. The worth of the geophysical data is found to be greatest for long spatial correlation lengths of subsurface heterogeneity with respect to wellbore separation, where flow and transport are largely controlled by highly connected flowpaths.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present molecular dynamics (MD) simulations results for dense fluids of ultrasoft, fully penetrable particles. These are a binary mixture and a polydisperse system of particles interacting via the generalized exponential model, which is known to yield cluster crystal phases for the corresponding monodisperse systems. Because of the dispersity in the particle size, the systems investigated in this work do not crystallize and form disordered cluster phases. The clusteringtransition appears as a smooth crossover to a regime in which particles are mostly located in clusters, isolated particles being infrequent. The analysis of the internal cluster structure reveals microsegregation of the big and small particles, with a strong homo-coordination in the binary mixture. Upon further lowering the temperature below the clusteringtransition, the motion of the clusters" centers-of-mass slows down dramatically, giving way to a cluster glass transition. In the cluster glass, the diffusivities remain finite and display an activated temperature dependence, indicating that relaxation in the cluster glass occurs via particle hopping in a nearly arrested matrix of clusters. Finally we discuss the influence of the microscopic dynamics on the transport properties by comparing the MD results with Monte Carlo simulations.