973 resultados para Light absorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron(III) complexes Fe(L)(L') (NO3)]-in which L is phenyl-N, N-bis(pyridin-2-yl) methyl]methanamine (1), (anthracen-9-yl)N, N-bis(pyridin-2-yl) methyl] methanamine (2), (pyreny-1-yl)-N, N-bis(pyridin- 2-yl) methyl] methanamine (3-5), and L' is catecholate (1-3), 4-tert-butyl catecholate (4), and 4-(2-aminoethyl)benzene- 1,2-diolate (5)-were synthesized and their photocytotoxic proper-ties examined. The five electron-paramagnetic complexes displayed a FeIII/ Fe-II redox couple near similar to 0.4 V versus a saturated calomel electrode (SCE) in DMF/0.1m tetrabutylammonium perchlorate (TBAP). They showed unpre-cedented photocytotoxicity in red light (600-720 nm) to give IC50-15 mm in various cell lines by means of apoptosis to generate reactive oxygen species. They were ingested in the nucleus of HeLa and HaCaT cells in 4 h, thereby interacting favorably with calf thymus (ct)-DNA and photocleaving pUC19 DNA in red light of 785 nm to form hydroxyl radicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visualization of intracellular organelles is achieved using a newly developed high throughput imaging cytometry system. This system interrogates the microfluidic channel using a sheet of light rather than the existing point-based scanning techniques. The advantages of the developed system are many, including, single-shot scanning of specimens flowing through the microfluidic channel at flow rate ranging from micro-to nano- lit./min. Moreover, this opens-up in-vivo imaging of sub-cellular structures and simultaneous cell counting in an imaging cytometry system. We recorded a maximum count of 2400 cells/min at a flow-rate of 700 nl/min, and simultaneous visualization of fluorescently-labeled mitochondrial network in HeLa cells during flow. The developed imaging cytometry system may find immediate application in biotechnology, fluorescence microscopy and nano-medicine. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two different soft-chemical, self-assembly-based solution approaches are employed to grow zinc oxide (ZnO) nanorods with controlled texture. The methods used involve seeding and growth on a substrate. Nanorods with various aspect ratios (1-5) and diameters (15-65 nm) are grown. Obtaining highly oriented rods is determined by the way the substrate is mounted within the chemical bath. Furthermore, a preheat and centrifugation step is essential for the optimization of the growth solution. In the best samples, we obtain ZnO nanorods that are almost entirely oriented in the (002) direction; this is desirable since electron mobility of ZnO is highest along this crystallographic axis. When used as the buffer layer of inverted organic photovoltaics (I-OPVs), these one-dimensional (1D) nanostructures offer: (a) direct paths for charge transport and (b) high interfacial area for electron collection. The morphological, structural, and optical properties of ZnO nanorods are studied using scanning electron microscopy, X-ray diffraction, and ultraviolet-visible light (UV-vis) absorption spectroscopy. Furthermore, the surface chemical features of ZnO films are studied using X-ray photoelectron spectroscopy and contact angle measurements. Using as-grown ZnO, inverted OPVs are fabricated and characterized. For improving device performance, the ZnO nanorods are subjected to UV-ozone irradiation. UV-ozone treated ZnO nanorods show: (i) improvement in optical transmission, (ii) increased wetting of active organic components, and (iii) increased concentration of Zn-O surface bonds. These observations correlate well with improved device performance. The devices fabricated using these optimized buffer layers have an efficiency of similar to 3.2% and a fill factor of 0.50; this is comparable to the best I-OPVs reported that use a P3HT-PCBM active layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on Raman and Ni K-edge x-ray absorption investigations of a NiS2-xSex (with x = 0.00, 0.50/0.55, 0.60, and 1.20) pyrite family. The Ni K-edge absorption edge shows a systematic shift going from an insulating phase (x = 0.00 and 0.50) to a metallic phase (x = 0.60 and 1.20). The near-edge absorption features show a clear evolution with Se doping. The extended x-ray absorption fine structure data reveal the evolution of the local structure with Se doping which mainly governs the local disorder. We also describe the decomposition of the NiS2-xSex Raman spectra and investigate the weights of various phonon modes using Gaussian and Lorentzian profiles. The effectiveness of the fitting models in describing the data is evaluated by means of Bayes factor estimation. The Raman analysis clearly demonstrates the disorder effects due to Se alloying in describing the phonon spectra of NiS2-xSex pyrites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple ball-drop impact tester is developed for studying the dynamic response of hierarchical, complex, small-sized systems and materials. The developed algorithm and set-up have provisions for applying programmable potential difference along the height of a test specimen during an impact loading; this enables us to conduct experiments on various materials and smart structures whose mechanical behavior is sensitive to electric field. The software-hardware system allows not only acquisition of dynamic force-time data at very fast sampling rate (up to 2 x 10(6) samples/s), but also application of a pre-set potential difference (up to +/- 10 V) across a test specimen for a duration determined by feedback from the force-time data. We illustrate the functioning of the set-up by studying the effect of electric field on the energy absorption capability of carbon nanotube foams of 5 x 5 x 1.2 mm(3) size under impact conditions. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose two-photon excitation-based light-sheet technique for nano-lithography. The system consists of 2 -configured cylindrical lens system with a common geometrical focus. Upon superposition, the phase-matched counter-propagating light-sheets result in the generation of identical and equi spaced nano-bump pattern. Study shows a feature size of as small as few tens of nanometers with a inter-bump distance of few hundred nanometers. This technique overcomes some of the limitations of existing nano-lithography techniques, thereby, may pave the way for mass-production of nano-structures. Potential applications can also be found in optical microscopy, plasmonics, and nano-electronics. Microsc. Res. Tech. 78:1-7, 2015. (c) 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current organic semiconductors for organic photovoltaics (OPV) have relative dielectric constants (relative permittivities, epsilon(r)) in the range of 2-4. As a consequence, Coulombically bound electron-hole pairs (excitons) are produced upon absorption of light, giving rise to limited power conversion efficiencies. We introduce a strategy to enhance epsilon(r) of well-known donors and acceptors without breaking conjugation, degrading charge carrier mobility or altering the transport gap. The ability of ethylene glycol (EG) repeating units to rapidly reorient their dipoles with the charge redistributions in the environment was proven via density functional theory (DFT) calculations. Fullerene derivatives functionalized with triethylene glycol side chains were studied for the enhancement of epsilon(r) together with poly(p-phenylene vinylene) and diketo-pyrrolopyrrole based polymers functionalized with similar side chains. The polymers showed a doubling of epsilon(r) with respect to their reference polymers in identical backbone. Fullerene derivatives presented enhancements up to 6 compared with phenyl-C-61-butyric acid methyl ester (PCBM) as the reference. Importantly, the applied modifications did not affect the mobility of electrons and holes and provided excellent solubility in common organic solvents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stolzite polymorph of PbWO4 catalyst was prepared by the facile room temperature precipitation method. Structural parameters were refined by the Rietveld analysis using powder X-ray data. PbWO4 was crystallized in the scheelite-type tetragonal structure with space group I4(1)/a (No. 88). Field emission scanning electron microscopy revealed leaf like morphology. Photoluminescence spectra exhibit broad blue emission (425 nm) under the excitation of 356 nm. The photocatalytic degradation of Methylene blue, Rhodamine B and Methyl orange dyes were measured under visible illumination. The 100% dye degradation was observed for MB and RhB dyes within 60 and 105 min. The rate constant was found to be in the decreasing order of MB > RhB > MO which followed the 1st order kinetic mechanism. Therefore, PbWO4 can be a potential candidate for blue component in white LEDs and also acts as a catalyst for the treatment of toxic and non-biodegradable organic pollutants in water. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidovanadium(IV) complexes of 2-(2'-pyridyl)-1,10-phenanthroline (pyphen), viz. VO(pyphen)(acac)](ClO4) (1), VO(pyphen)(anacac)](ClO4) (2) and VO(pyphen)(cur)](ClO4) (3), where acac is acetylacetonate (in 1), anacac is anthracenylacetylacetonate (in 2) and cur is curcumin monoanion (in 3) were synthesized, characterized and their photo-induced DNA cleavage activities and photo-cytotoxicities studied. The complexes are 1: 1 electrolytes in DMF. The one-electron paramagnetic complexes show a d-d band near 760 nm in DMF. Complexes 2 and 3 are blue and green emissive, respectively, in DMSO. The complexes exhibit irreversible V-IV/V-III reductive responses near -1.1 V and V-V/V-IV oxidative responses near 0.85 V vs. SCE in DMF-0.1 M TBAP. Complexes 2 and 3 display significant and selective photo-cytotoxicity upon irradiation with visible light giving an IC50 value of about 5 mu M against HeLa and MCF-7 cancer cells; they are significantly less-toxic against normal 3T3 control cells and in the absence of light. Complex 1 was used as a control. Both cytosolic and nuclear localization of the complexes were observed on the basis of fluorescence imaging. The complexes, avid binders to calf thymus (ct) DNA, were found to photocleave supercoiled pUC19 DNA upon irradiation with near-IR light (785 nm) by generating hydroxyl radical (OH) as the reactive oxygen species (ROS). Cell death events noted with HeLa and MCF-7 cell lines likely are attributable to apoptotic pathways involving light-assisted generation of intracellular ROS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cubic ZrO2: Fe3+ (0.5-4 mol%) nanoparticles (NPs) were synthesized via bin-inspired, inexpensive and simple route using Phyllanthus acidus as fuel. PXRD, SEM, TEM, FTIR, UV absorption and PL studies were performed to ascertain the formation of NPs. Rietveld analysis confirmed the formation of cubic structure. The influence of Fe3+ on the structure, morphology, UV absorption, PL emission and photocatalytic activity of NPs were investigated. The CIE chromaticity coordinates (0.36, 0.41) show that NPs could be a promising candidate for white LEDs. The influence of Fe3+ on ZrO2 matrix for photocatalytic degradation of AO7 was evaluated under UVA and Sunlight irradiation. The enhanced photocatalytic activity of spherical shaped ZrO2: Fe3+ (2 mol%) under UVA light was attributed to dopant concentration, crystallite size, narrow band gap, textural properties and capability for reducing the electron-hole pair recombination. The trend of inhibitory effect in the presence of different radical scavengers were followed the order SO42- > Cl- > C2H5OH > HCO3- > CO32-. The recycling catalytic ability of the ZrO2: Fe3+ (2 mol%) was also evaluated with a negligible decrease in the degradation efficiency even after the sixth successive run. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, two different types of multiwall carbon nanotubes (MWNTs) namely pristine (p-MWNTs) and amine functionalized (a-MWNTs) were melt-mixed with polycaprolactone (PCL) to develop biodegradable electromagnetic interference (EMI) shielding materials. The bulk electrical conductivity of the nanocomposites was assessed using broadband dielectric spectroscopy and the structural properties were evaluated using dynamic mechanical thermal analysis (DMTA). Both the electrical conductivity and the structural properties improved after the addition of MWNTs and were observed to be proportional to the increasing fractions in the nanocomposites. The shielding effectiveness of the nanocomposites was studied using a vector network analyzer (VNA) in a broad range of frequencies, X-band (8 to 12 GHz) and K-u-band (12 to 18 GHz) on toroidal samples. The shielding effectiveness significantly improved on addition of MWNTs, more in the case of p-MWNTs than in a-MWNTs. For instance, at a given fraction of MWNTs (3 wt%), PCL with p-MWNTs and a-MWNTs showed a shielding effectiveness of -32 dB and -29 dB, respectively. Moreover, it was observed that reflection was the primary mechanism of shielding at lower fractions of MWNTs, while absorption dominated at higher fractions in the composites. As one of the rationales of this work was to develop biodegradable EMI shielding materials to address the challenges concerning electronic waste, the effect of different MWNTs on the biodegradability of PCL composites was assessed through enzymatic degradation. The enzymatic degradation of the samples cut from the hot pressed films by bacterial lipase was investigated. It was noted that a-MWNTs exhibited almost similar degradation rate as the control PCL sample; however, p-MWNTs showed a slower degradation rate. This study demonstrates the potential use of PCL-MWNT composites as flexible, light weight and eco-friendly EMI shielding materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, amino-silane modified layered organosilicates were used to reinforce cyclic olefin copolymer to enhance the thermal, mechanical and moisture impermeable barrier properties. The optimum clay loading (4%) in the nanocomposite increases the thermal stability of the film while further loading decreases film stability. Water absorption behavior at 62 degrees C was carried out and compared with the behavior at room temperature and 48 degrees C. The stiffness of the matrix increases with clay content and the recorded strain to failure for the composite films was lower than the neat film. Dynamic mechanical analysis show higher storage modulus and low loss modulus for 2.5-4 wt% clay loading. Calcium degradation test and device encapsulation also show the evidence of optimum clay loading of 4 wt% for improved low water vapor transmission rates compared to other nanocomposite films. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photo-induced effects of Ge12Sb25S63 films illuminated with 532 nm laser light are investigated from transmission spectra measured by FTIR spectroscopy. The material exhibits photo-bleaching (PB) when exposed to band gap light for a prolonged time in a vacuum. The PB is ascribed to structural changes inside the film as well as surface photooxidation. The amorphous nature of thin films was detected by x-ray diffraction. The chemical composition of the deposited thin films was examined by energy dispersive x-ray analysis (EDAX). The refractive indices of the films were obtained from the transmission spectra based on an inverse synthesis method and the optical band gaps were derived from optical absorption spectra using the Tauc plot. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model. It was found that the mechanism of the optical absorption follows the rule of the allowed non-direct transition. Raman and x-ray photoelectron spectra (XPS) were measured and decomposed into several peaks that correspond to the different structural units which support the optical changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a laser interference technique for the fabrication of 3D nano-structures. This is possible with the introduction of specialized spatial filter in a 2 pi cylindrical lens system (consists of two opposing cylindrical lens sharing a common geometrical focus). The spatial filter at the back-aperture of a cylindrical lens gives rise to multiple light-sheet patterns. Two such interfering counter-propagating light-sheet pattern result in periodic 3D nano-pillar structure. This technique overcomes the existing slow point-by-point scanning, and has the ability to pattern selectively over a large volume. The proposed technique allows large-scale fabrication of periodic structures. Computational study shows a field-of-view (patterning volume) of approximately 12: 2mm(3) with the pillar-size of 80 nm and inter-pillar separation of 180 nm. Applications are in nano-waveguides, 3D nano-electronics, photonic crystals, and optical microscopy. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. In this work we search for the signatures of low-dimensional chaos in the temporal behavior of the Kepler-field blazar W2R 1946+42. Methods. We use a publicly available, similar to 160 000-point-long and mostly equally spaced light curve of W2R 1946+42. We apply the correlation integral method to both real datasets and phase randomized surrogates. Results. We are not able to confirm the presence of low-dimensional chaos in the light curve. This result, however, still leads to some important implications for blazar emission mechanisms, which are discussed.