974 resultados para Laser induced spectroscopy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high velocity of free atoms associated with the thermal motion, together with the velocity distribution of atoms has imposed the ultimate limitation on the precision of ultrahigh resolution spectroscopy. A sample consisting of low velocity atoms would provide a substantial improvement in spectroscopy resolution. To overcome the problem of thermal motion, atomic physicists have pursued two goals; first, the reduction of the thermal motion (cooling); and second, the confinement of the atoms by means of electromagnetic fields (trapping). Cooling carried sufficiently far, eliminates the motional problems, whereas trapping allows for long observation times. In this work the laser cooling and trapping of an argon atomic beam will be discussed. The experiments involve a time-of-flight spectroscopy on metastable argon atoms. Laser deceleration or cooling of atoms is achieved by counter propagating a photon against an atomic beam of metastable atoms. The solution to the Doppler shift problem is achieved using spatially varying magnetic field along the beam path to Zeeman shift the atomic resonance frequency so as to keep the atoms in resonance with a fixed frequency cooling laser. For trapping experiments a Magnetooptical trap (MOT) will be used. The MOT is formed by three pairs of counter-propagating laser beams with mutual opposite circular polarization and a frequency tuned slightly below the center of the atomic resonance and superimposed on a magnetic quadrupole field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrafast laser owns extreme small beam size and high pulse intensity which enable spatial localised modification either on the surface or in the bulk of materials. Therefore, ultrafast laser has been widely used to micromachine optical fibres to alter optical structures. In order to do the precise control of the micromachining process to achieve the desired structure and modification, investigations on laser parameters control should be carried out to make better understanding of the effects in the laser micromachining process. These responses are important to laser machining, most of which are usually unknown during the process. In this work, we report the real time monitored results of the reflection of PMMA based optical fibre Bragg gratings (POFBGs) during excimer ultraviolet laser micromachining process. Photochemical and thermal effects have been observed during the process. The UV radiation was absorbed by the PMMA material, which consequently induced the modifications in both spatial structure and material properties of the POFBG. The POFBG showed a significant wavelength blue shift during laser micromachining. Part of it attributed to UV absorption converted thermal energy whilst the other did not disappear after POFBG cooling off, which attributed to UV induced photodegradation in POF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally study the temporal dynamics of amplitude-modulated laser beams propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. Nonlinear refraction induced in the sample by thermal effects leads to both phase reversing of the transmitted signals and dynamic hysteresis in the input- output power curves. A theoretical model including beam propagation and thermal lensing dynamics reproduces the experimental findings. © 2015 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Es ist ein lang gehegter Traum in der Chemie, den Ablauf einer chemischen Reaktion zu kontrollieren und das Aufbrechen und Bilden chemischer Bindungen zu steuern. Diesem Ziel verschreibt sich auch das Forschungsgebiet der Femtochemie. Hier werden Femtosekunden Laserpulse eingesetzt um auf dem Quantenlevel molekulare Dynamiken auf ihren intrinsischen Zeitskalen zu kontrollieren und das System selektiv und effizient von einem Anfangs- in einen Zielzustand zu überführen. Der Wunsch, mit geformten Femtosekunden Laserpulsen Kontrolle über transiente Dynamiken und finale Populationen auszuüben, zu beobachten und zu verstehen, bildet auch die Motivation für diese Arbeit. Hierzu wurden mit Hilfe der Photoelektronenspektroskopie Untersuchungen zur Wechselwirkung atomarer und molekularer Prototypsysteme mit intensiven, geformten Femtosekunden Laserpulsen durchgeführt. Die Verwendung von Modelsystemen ermöglicht es, grundlegende Mechanismen der kohärenten Kontrolle in intensiven Laserfeldern zu analysieren, ohne dass sie durch komplexe Wechselwirkungen verschleiert werden. Zunächst wurde die Wechselwirkung von Kaliumatomen mit gechirpten Femtosekunden Laserpulsen untersucht. In den Experimenten wurden sowohl transiente Dynamiken als auch die Endbesetzungen der elektronischen Zustände abgebildet. In den folgenden Experimenten wurde das Quantenkontrollszenario SPODS auf die gekoppelte Elektronen-Kern-Dynamik in Molekülen übertragen. Die Kontrolle basiert auf der Erzeugung und Manipulation von Ladungsoszillationen durch Pulssequenzen. Der letzte Teil widmet sich der Entwicklung adiabatischer Kontrollmechanismen in Molekülen. Bei den Experimenten wurden gechirpte Airypulse eingesetzt um robuste Starkfeldanregung in molekularen Systemen zu induzieren. In Zukunft wird die Erforschung immer komplexerer Moleküle im Rahmen der transienten Kontrolle im Fokus stehen. Dabei werden nicht nur die effiziente Besetzung gebundener Zustände von Interesse sein, sondern auch die gezielte Dissoziation in spezifische Fragmente, photoinduzierte Isomerisierungsreaktionen oder die Kontrolle über transiente Dynamiken, die Einfluss auf andere molekulare Eigenschaften haben. Vor dem Hintergrund dieses übergeordneten Wunsches, photochemische Reaktionen immer komplexerer Moleküle, bis hin zu großen, biologisch relevanten Molekülen, zu kontrollieren, ist es umso wichtiger, die zugrundeliegenden Anregungsmechanismen in einfachen Systemen nachzuvollziehen. In den hier präsentierten Experimenten wurde gezeigt, wie die simultane Beobachtung der bekleideten und der stationären Zustände in atomaren Systemen zu einem umfassenden Bild der lichtinduzierte Dynamiken führen kann. Die gewonnenen Erkenntnisse können auf die Steuerung gekoppelter Dynamiken übertragen werden, durch die Kontrolle auch in molekularen Systemen möglich wird.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis explores the potential of chiral plasmonic nanostructures for the ultrasensitive detection of protein structure. These nanostructures support the generation of fields with enhanced chirality relative to circularly polarised light and are an extremely incisive probe of protein structure. In chapter 4 we introduce a nanopatterned Au film (Templated Plasmonic Substrate, TPS) fabricated using a high through-put injection moulding technique which is a viable alternative to expensive lithographically fabricated nanostructures. The optical and chiroptical properties of TPS nanostructures are found to be highly dependent on the coupling between the electric and magnetic modes of the constituent solid and inverse structures. Significantly, refractive index based measurements of strongly coupled TPSs display a similar sensitivity to protein structure as previous lithographic nanostructures. We subsequently endeavour to improve the sensing properties of TPS nanostructures by developing a high through-put nanoscale chemical functionalisation technique. This process involves a chemical protection/deprotection strategy. The protection step generates a self-assembled monolayer (SAM) of a thermally responsive polymer on the TPS surface which inhibits protein binding. The deprotection step exploits the presence of nanolocalised thermal gradients in the water surrounding the TPS upon irradiation with an 8ns pulsed laser to modify the SAM conformation on surfaces with high net chirality. This allows binding of biomaterial in these regions and subsequently enhances the TPS sensitivity levels. In chapter 6 an alternative method for the detection of protein structure using TPS nanostructures is introduced. This technique relies on mediation of the electric/magnetic coupling in the TPS by the adsorbed protein. This phenomenon is probed through both linear reflectance and nonlinear second harmonic generation (SHG) measurements. Detection of protein structure using this method does not require the presence of fields of enhanced chirality whilst it is also sensitive to a larger array of secondary structure motifs than the measurements in chapters 4 and 5. Finally, a preliminary investigation into the detection of mesoscale biological structure is presented. Sensitivity to the mesoscale helical pitch of insulin amyloid fibrils is displayed through the asymmetry in the circular dichroism (CD) of lithographic gammadions of varying thickness upon adsorption of insulin amyloid fibril spherulites and fragmented fibrils. The proposed model for this sensitivity to the helical pitch relies on the vertical height of the nanostructures relative to this structural property as well as the binding orientation of the fibrils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser-based Powder Bed Fusion (L-PBF) technology is one of the most commonly used metal Additive Manufacturing (AM) techniques to produce highly customized and value-added parts. The AlSi10Mg alloy has received more attention in the L-PBF process due to its good printability, high strength/weight ratio, corrosion resistance, and relatively low cost. However, a deep understanding of the effect of heat treatments on this alloy's metastable microstructure is still required for developing tailored heat treatments for the L-PBF AlSi10Mg alloy to overcome the limits of the as-built condition. Several authors have already investigated the effects of conventional heat treatment on the microstructure and mechanical behavior of the L-PBF AlSi10Mg alloy but often overlooked the peculiarities of the starting supersatured and ultrafine microstructure induced by rapid solidification. For this reason, the effects of innovative T6 heat treatment (T6R) on the microstructure and mechanical behavior of the L-PBF AlSi10Mg alloy were assessed. The short solution soaking time (10 min) and the relatively low temperature (510 °C) reduced the typical porosity growth at high temperatures and led to a homogeneous distribution of fine globular Si particles in the Al matrix. In addition, it increased the amount of Mg and Si in the solid solution available for precipitation hardening during the aging step. The mechanical (at room temperature and 200 °C) and tribological properties of the T6R alloy were evaluated and compared with other solutions, especially with an optimized direct-aged alloy (T5 alloy). Results showed that the innovative T6R alloy exhibits the best mechanical trade-off between strength and ductility, the highest fatigue strength among the analyzed conditions, and interesting tribological behavior. Furthermore, the high-temperature mechanical performances of the heat-treated L-PBF AlSi10Mg alloy make it suitable for structural components operating in mild service conditions at 200 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrafast pump-probe spectroscopy is a conceptually simple and versatile tool for resolving photoinduced dynamics in molecular systems. Due to the fast development of new experimental setups, such as synchrotron light sources and X-ray free electron lasers (XFEL), new spectral windows are becoming accessible. On the one hand, these sources have enabled scientist to access faster and faster time scales and to reach unprecedent insights into dynamical properties of matter. On the other hand, the complementarity of well-developed and novel techniques allows to study the same physical process from different points of views, integrating the advantages and overcoming the limitations of each approach. In this context, it is highly desirable to reach a clear understanding of which type of spectroscopy is more suited to capture a certain facade of a given photo-induced process, that is, to establish a correlation between the process to be unraveled and the technique to be used. In this thesis, I will show how computational spectroscopy can be a tool to establish such a correlation. I will study a specific process, which is the ultrafast energy transfer in the nicotinamide adenine dinucleotide dimer (NADH). This process will be observed in different spectral windows (from UV-VIS to X-rays), accessing the ability of different spectroscopic techniques to unravel the system evolution by means of state-of-the-art theoretical models and methodologies. The comparison of different spectroscopic simulations will demonstrate their complementarity, eventually allowing to identify the type of spectroscopy that is best suited to resolve the ultrafast energy transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AlSi10Mg alloy is one of the most widely used alloys for producing structural components by Laser-based Powder Fusion (L-PBF) technology due to the high mechanical and technological properties. The present work aims to characterize mechanically and tribologically the L-PBF AlSi10Mg alloy subjected to both heat treatment and surface modification cycles. Specifically, the effects of three heat treatments on the tribological and mechanical properties of the alloy were analyzed: T5 (artificial aging at 160 °C for 4 h), T6 rapid solution heat treatment (solution heat treatment at 510 °C for 1h and aging at 160 °C for 6 h), and T6 benchmark (solution heat treatment at 540 °C for 1h and aging at 160 °C for 4 h), the latter used as a benchmark. The study highlighted how the better balance between strength and ductility properties induced by the introduction of heat treatments leads to lower wear resistance and not significant variations in the friction coefficient of the alloy. The tribological and mechanical behavior of the alloy coated with two different coating structures, consisting of (i) chemical Ni (Ni-P) and (ii) Ni-P + DLC, was also evaluated. The goal was the identification of a deposition cycle such as to guarantee the optimization of the mechanical and tribological behavior of the alloy. The Ni-P coating provided good wear resistance but an increase in the coefficient of friction. In contrast, using the DLC top coating resulted in excellent tribological performance in wear resistance and friction coefficient. The samples characterized by the Ni-P + DLC multilayer coating were subsequently subjected to mechanical characterization. The results obtained highlighted problems of adhesion and incipient breaking of the material due to the different mechanical behavior of the coating, considerably reducing the mechanical performance of the alloy coated with Ni-P+DLC multilayer solution compared to the specimens in the un-coated condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snakebite is a neglected disease and serious health problem in Brazil, with most bites being caused by snakes of the genus Bothrops. Although serum therapy is the primary treatment for systemic envenomation, it is generally ineffective in neutralizing the local effects of these venoms. In this work, we examined the ability of 7,8,3'-trihydroxy-4'-methoxyisoflavone (TM), an isoflavone from Dipteryx alata, to neutralize the neurotoxicity (in mouse phrenic nerve-diaphragm preparations) and myotoxicity (assessed by light microscopy) of Bothrops jararacussu snake venom in vitro. The toxicity of TM was assessed using the Salmonella microsome assay (Ames test). Incubation with TM alone (200 μg/mL) did not alter the muscle twitch tension whereas incubation with venom (40 μg/mL) caused irreversible paralysis. Preincubation of TM (200 μg/mL) with venom attenuated the venom-induced neuromuscular blockade by 84% ± 5% (mean ± SEM; n = 4). The neuromuscular blockade caused by bothropstoxin-I (BthTX-I), the major myotoxic PLA2 of this venom, was also attenuated by TM. Histological analysis of diaphragm muscle incubated with TM showed that most fibers were preserved (only 9.2% ± 1.7% were damaged; n = 4) compared to venom alone (50.3% ± 5.4% of fibers damaged; n = 3), and preincubation of TM with venom significantly attenuated the venom-induced damage (only 17% ± 3.4% of fibers damaged; n = 3; p < 0.05 compared to venom alone). TM showed no mutagenicity in the Ames test using Salmonella strains TA98 and TA97a with (+S9) and without (-S9) metabolic activation. These findings indicate that TM is a potentially useful compound for antagonizing the neuromuscular effects (neurotoxicity and myotoxicity) of B. jararacussu venom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Valproic acid (VPA) and trichostatin A (TSA) are known histone deacetylase inhibitors (HDACIs) with epigenetic activity that affect chromatin supra-organization, nuclear architecture, and cellular proliferation, particularly in tumor cells. In this study, chromatin remodeling with effects extending to heterochromatic areas was investigated by image analysis in non-transformed NIH 3T3 cells treated for different periods with different doses of VPA and TSA under conditions that indicated no loss of cell viability. Image analysis revealed chromatin decondensation that affected not only euchromatin but also heterochromatin, concomitant with a decreased activity of histone deacetylases and a general increase in histone H3 acetylation. Heterochromatin protein 1-α (HP1-α), identified immunocytochemically, was depleted from the pericentromeric heterochromatin following exposure to both HDACIs. Drastic changes affecting cell proliferation and micronucleation but not alteration in CCND2 expression and in ratios of Bcl-2/Bax expression and cell death occurred following a 48-h exposure of the NIH 3T3 cells particularly in response to higher doses of VPA. Our results demonstrated that even low doses of VPA (0.05 mM) and TSA (10 ng/ml) treatments for 1 h can affect chromatin structure, including that of the heterochromatin areas, in non-transformed cells. HP1-α depletion, probably related to histone demethylation at H3K9me3, in addition to the effect of VPA and TSA on histone H3 acetylation, is induced on NIH 3T3 cells. Despite these facts, alterations in cell proliferation and micronucleation, possibly depending on mitotic spindle defects, require a longer exposure to higher doses of VPA and TSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiotherapy (RT) is a risk factor for accelerated carotid artery atherosclerotic disease in subjects with head and neck cancer. However, the risk factors of RT-induced carotid artery remodeling are not established. This study aimed to investigate the effects of RT on carotid and popliteal arteries in subjects with head and neck cancer and to evaluate the relationship between baseline clinical and laboratory features and the progression of RT-induced atherosclerosis. Eleven men (age = 57.9 ± 6.2years) with head and neck cancer who underwent cervical bilateral irradiation were prospectively examined by clinical and laboratory analysis and by carotid and popliteal ultrasound before and after treatment (mean interval between the end of RT and the post-RT assessment = 181 ± 47 days). No studied subject used hypocholesterolemic medications. Significant increases in carotid intima-media thickness (IMT) (0.95 ± 0.08 vs. 0.87 ± 0.05 mm; p < 0.0001) and carotid IMT/diameter ratio (0.138 ± 0.013 vs. 0.129 ± 0.014; p = 0.001) were observed after RT, while no changes in popliteal structural features were detected. In addition, baseline low-density lipoprotein cholesterol levels showed a direct correlation with RT-induced carotid IMT change (r = 0.66; p = 0.027), while no other studied variable exhibited a significant relationship with carotid IMT change. These results indicate that RT-induced atherosclerosis is limited to the irradiated area and also suggest that it may be predicted by low-density lipoprotein cholesterol levels in subjects with head and neck cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P2X7 receptors play an important role in inflammatory hyperalgesia, but the mechanisms involved in their hyperalgesic role are not completely understood. In this study, we hypothesized that P2X7 receptor activation induces mechanical hyperalgesia via the inflammatory mediators bradykinin, sympathomimetic amines, prostaglandin E2 (PGE2), and pro-inflammatory cytokines and via neutrophil migration in rats. We found that 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate triethylammonium salt (BzATP), the most potent P2X7 receptor agonist available, induced a dose-dependent mechanical hyperalgesia that was blocked by the P2X7 receptor-selective antagonist A-438079 but unaffected by the P2X1,3,2/3 receptor antagonist TNP-ATP. These findings confirm that, although BzATP also acts at both P2X1 and P2X3 receptors, BzATP-induced hyperalgesia was mediated only by P2X7 receptor activation. Co-administration of selective antagonists of bradykinin B1 (Des-Arg(8)-Leu(9)-BK (DALBK)) or B2 receptors (bradyzide), β1 (atenolol) or β2 adrenoceptors (ICI 118,551), or local pre-treatment with the cyclooxygenase inhibitor indomethacin or the nonspecific selectin inhibitor fucoidan each significantly reduced BzATP-induced mechanical hyperalgesia in the rat hind paw. BzATP also induced the release of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6 and cytokine-induced neutrophil chemoattractant-1 (CINC-1), an effect that was significantly reduced by A-438079. Co-administration of DALBK or bradyzide with BzATP significantly reduced BzATP-induced IL-1β and CINC-1 release. These results indicate that peripheral P2X7 receptor activation induces mechanical hyperalgesia via inflammatory mediators, especially bradykinin, which may contribute to pro-inflammatory cytokine release. These pro-inflammatory cytokines in turn may mediate the contributions of PGE2, sympathomimetic amines and neutrophil migration to the mechanical hyperalgesia induced by local P2X7 receptor activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the peripheral effect of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) in albumin-induced arthritis in temporomandibular joint (TMJ) of rats. Antigen-induced arthritis (AIA) was generated in rats with methylated bovine serum albumin (mBSA) diluted in complete Freund׳s adjuvant. Pretreatment with an intra-articular injection of 15d-PGJ2 (100 ng/TMJ) before mBSA intra-articular injection (10 µg/TMJ) (challenge) in immunized rats significantly reduced the albumin-induced arthritis inflammation. The results demonstrated that 15d-PGJ2 was able to inhibit plasma extravasation, leukocyte migration and the release of inflammatory cytokines IL-6, IL-12, IL-18 and the chemokine CINC-1 in the TMJ tissues. In addition, 15d-PGJ2 was able to increase the expression of the anti-adhesive molecule CD55 and the anti-inflammatory cytokine IL-10. Taken together, it is possible to suggest that 15d-PGJ2 inhibit leukocyte infiltration and subsequently inflammatory process, through a shift in the balance of the pro- and anti-adhesive properties. Thus, 15d-PGJ2 might be used as a potential anti-inflammatory drug to treat arthritis-induced inflammation of the temporomandibular joint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corynebacterium species (spp.) are among the most frequently isolated pathogens associated with subclinical mastitis in dairy cows. However, simple, fast, and reliable methods for the identification of species of the genus Corynebacterium are not currently available. This study aimed to evaluate the usefulness of matrix-assisted laser desorption ionization/mass spectrometry (MALDI-TOF MS) for identifying Corynebacterium spp. isolated from the mammary glands of dairy cows. Corynebacterium spp. were isolated from milk samples via microbiological culture (n=180) and were analyzed by MALDI-TOF MS and 16S rRNA gene sequencing. Using MALDI-TOF MS methodology, 161 Corynebacterium spp. isolates (89.4%) were correctly identified at the species level, whereas 12 isolates (6.7%) were identified at the genus level. Most isolates that were identified at the species level with 16 S rRNA gene sequencing were identified as Corynebacterium bovis (n=156; 86.7%) were also identified as C. bovis with MALDI-TOF MS. Five Corynebacterium spp. isolates (2.8%) were not correctly identified at the species level with MALDI-TOF MS and 2 isolates (1.1%) were considered unidentified because despite having MALDI-TOF MS scores >2, only the genus level was correctly identified. Therefore, MALDI-TOF MS could serve as an alternative method for species-level diagnoses of bovine intramammary infections caused by Corynebacterium spp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescence Correlation Spectroscopy (FCS) is an optical technique that allows the measurement of the diffusion coefficient of molecules in a diluted sample. From the diffusion coefficient it is possible to calculate the hydrodynamic radius of the molecules. For colloidal quantum dots (QDs) the hydrodynamic radius is valuable information to study interactions with other molecules or other QDs. In this chapter we describe the main aspects of the technique and how to use it to calculate the hydrodynamic radius of quantum dots (QDs).