944 resultados para Junctions


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contractile state of microcirculatory vessels is a major determinant of the blood pressure of the whole systemic circulation. Continuous bi-directional communication exists between the endothelial cells (ECs) and smooth muscle cells (SMCs) that regulates calcium (Ca2+) dynamics in these cells. This study presents theoretical approaches to understand some of the important and currently unresolved microcirculatory phenomena. ^ Agonist induced events at local sites have been shown to spread long distances in the microcirculation. We have developed a multicellular computational model by integrating detailed single EC and SMC models with gap junction and nitric oxide (NO) coupling to understand the mechanisms behind this effect. Simulations suggest that spreading vasodilation mainly occurs through Ca 2+ independent passive conduction of hyperpolarization in RMAs. Model predicts a superior role for intercellular diffusion of inositol (1,4,5)-trisphosphate (IP3) than Ca2+ in modulating the spreading response. ^ Endothelial derived signals are initiated even during vasoconstriction of stimulated SMCs by the movement of Ca2+ and/or IP3 into the EC which provide hyperpolarizing feedback to SMCs to counter the ongoing constriction. Myoendothelial projections (MPs) present in the ECs have been recently proposed to play a role in myoendothelial feedback. We have developed two models using compartmental and 2D finite element methods to examine the role of these MPs by adding a sub compartment in the EC to simulate MP with localization of intermediate conductance calcium activated potassium channels (IKCa) and IP3 receptors (IP 3R). Both models predicted IP3 mediated high Ca2+ gradients in the MP after SMC stimulation with limited global spread. This Ca 2+ transient generated a hyperpolarizing feedback of ∼ 2–3mV. ^ Endothelium derived hyperpolarizing factor (EDHF) is the dominant form of endothelial control of SMC constriction in the microcirculation. A number of factors have been proposed for the role of EDHF but no single pathway is agreed upon. We have examined the potential of myoendothelial gap junctions (MEGJs) and potassium (K+) accumulation as EDHF using two models (compartmental and 2D finite element). An extra compartment is added in SMC to simulate micro domains (MD) which have NaKα2 isoform sodium potassium pumps. Simulations predict that MEGJ coupling is much stronger in producing EDHF than alone K+ accumulation. On the contrary, K+ accumulation can alter other important parameters (EC V m, IKCa current) and inhibit its own release as well as EDHF conduction via MEGJs. The models developed in this study are essential building blocks for future models and provide important insights to the current understanding of myoendothelial feedback and EDHF.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In response to a crime epidemic afflicting Latin America since the early 1990s, several countries in the region have resorted to using heavy-force police or military units to physically retake territories de facto controlled by non-State criminal or insurgent groups. After a period of territory control, the heavy forces hand law enforcement functions in the retaken territories to regular police officers, with the hope that the territories and their populations will remain under the control of the state. To a varying degree, intensity, and consistency, Brazil, Colombia, Mexico, and Jamaica have adopted such policies since the mid-1990s. During such operations, governments need to pursue two interrelated objectives: to better establish the state’s physical presence and to realign the allegiance of the population in those areas toward the state and away from the non-State criminal entities. From the perspective of law enforcement, such operations entail several critical decisions and junctions, such as: Whether or not to announce the force insertion in advance. The decision trades off the element of surprise and the ability to capture key leaders of the criminal organizations against the ability to minimize civilian casualties and force levels. The latter, however, may allow criminals to go to ground and escape capture. Governments thus must decide whether they merely seek to displace criminal groups to other areas or maximize their decapitation capacity. Intelligence flows rarely come from the population. Often, rival criminal groups are the best source of intelligence. However, cooperation between the State and such groups that goes beyond using vetted intelligence provided by the groups, such as a State tolerance for militias, compromises the rule-of-law integrity of the State and ultimately can eviscerate even public safety gains. Sustaining security after initial clearing operations is at times even more challenging than conducting the initial operations. Although unlike the heavy forces, traditional police forces, especially if designed as community police, have the capacity to develop trust of the community and ultimately focus on crime prevention, developing such trust often takes a long time. To develop the community’s trust, regular police forces need to conduct frequent on-foot patrols with intensive nonthreatening interactions with the population and minimize the use of force. Moreover, sufficiently robust patrol units need to be placed in designated beats for substantial amount of time, often at least over a year. Establishing oversight mechanisms, including joint police-citizens’ boards, further facilities building trust in the police among the community. After disruption of the established criminal order, street crime often significantly rises and both the heavy-force and community-police units often struggle to contain it. The increase in street crime alienates the population of the retaken territory from the State. Thus developing a capacity to address street crime is critical. Moreover, the community police units tend to be vulnerable (especially initially) to efforts by displaced criminals to reoccupy the cleared territories. Losing a cleared territory back to criminal groups is extremely costly in terms of losing any established trust and being able to recover it. Rather than operating on a priori determined handover schedule, a careful assessment of the relative strength of regular police and criminal groups post-clearing operations is likely to be a better guide for timing the handover from heavy forces to regular police units. Cleared territories often experience not only a peace dividend, but also a peace deficit – in the rise new serious crime (in addition to street crime). Newly – valuable land and other previously-inaccessible resources can lead to land speculation and forced displacement; various other forms of new crime can also significantly rise. Community police forces often struggle to cope with such crime, especially as it is frequently linked to legal business. Such new crime often receives little to no attention in the design of the operations to retake territories from criminal groups. But without developing an effective response to such new crime, the public safety gains of the clearing operations can be altogether lost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the primary visual cortex, neurons with similar physiological features are clustered together in columns extending through all six cortical layers. These columns form modular orientation preference maps. Long-range lateral fibers are associated to the structure of orientation maps since they do not connect columns randomly; they rather cluster in regular intervals and interconnect predominantly columns of neurons responding to similar stimulus features. Single orientation preference maps – the joint activation of domains preferring the same orientation - were observed to emerge spontaneously and it was speculated whether this structured ongoing activation could be caused by the underlying patchy lateral connectivity. Since long-range lateral connections share many features, i.e. clustering, orientation selectivity, with visual inter-hemispheric connections (VIC) through the corpus callosum we used the latter as a model for long-range lateral connectivity. In order to address the question of how the lateral connectivity contributes to spontaneously generated maps of one hemisphere we investigated how these maps react to the deactivation of VICs originating from the contralateral hemisphere. To this end, we performed experiments in eight adult cats. We recorded voltage-sensitive dye (VSD) imaging and electrophysiological spiking activity in one brain hemisphere while reversible deactivating the other hemisphere with a cooling technique. In order to compare ongoing activity with evoked activity patterns we first presented oriented gratings as visual stimuli. Gratings had 8 different orientations distributed equally between 0º and 180º. VSD imaged frames obtained during ongoing activity conditions were then compared to the averaged evoked single orientation maps in three different states: baseline, cooling and recovery. Kohonen self-organizing maps were also used as a means of analysis without prior assumption (like the averaged single condition maps) on ongoing activity. We also evaluated if cooling had a differential effect on evoked and ongoing spiking activity of single units. We found that deactivating VICs caused no spatial disruption on the structure of either evoked or ongoing activity maps. The frequency with which a cardinally preferring (0º or 90º) map would emerge, however, decreased significantly for ongoing but not for evoked activity. The same result was found by training self-organizing maps with recorded data as input. Spiking activity of cardinally preferring units also decreased significantly for ongoing when compared to evoked activity. Based on our results we came to the following conclusions: 1) VICs are not a determinant factor of ongoing map structure. Maps continued to be spontaneously generated with the same quality, probably by a combination of ongoing activity from local recurrent connections, thalamocortical loop and feedback connections. 2) VICs account for a cardinal bias in the temporal sequence of ongoing activity patterns, i.e. deactivating VIC decreases the probability of cardinal maps to emerge spontaneously. 3) Inter- and intrahemispheric long-range connections might serve as a grid preparing primary visual cortex for likely junctions in a larger visual environment encompassing the two hemifields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the primary visual cortex, neurons with similar physiological features are clustered together in columns extending through all six cortical layers. These columns form modular orientation preference maps. Long-range lateral fibers are associated to the structure of orientation maps since they do not connect columns randomly; they rather cluster in regular intervals and interconnect predominantly columns of neurons responding to similar stimulus features. Single orientation preference maps – the joint activation of domains preferring the same orientation - were observed to emerge spontaneously and it was speculated whether this structured ongoing activation could be caused by the underlying patchy lateral connectivity. Since long-range lateral connections share many features, i.e. clustering, orientation selectivity, with visual inter-hemispheric connections (VIC) through the corpus callosum we used the latter as a model for long-range lateral connectivity. In order to address the question of how the lateral connectivity contributes to spontaneously generated maps of one hemisphere we investigated how these maps react to the deactivation of VICs originating from the contralateral hemisphere. To this end, we performed experiments in eight adult cats. We recorded voltage-sensitive dye (VSD) imaging and electrophysiological spiking activity in one brain hemisphere while reversible deactivating the other hemisphere with a cooling technique. In order to compare ongoing activity with evoked activity patterns we first presented oriented gratings as visual stimuli. Gratings had 8 different orientations distributed equally between 0º and 180º. VSD imaged frames obtained during ongoing activity conditions were then compared to the averaged evoked single orientation maps in three different states: baseline, cooling and recovery. Kohonen self-organizing maps were also used as a means of analysis without prior assumption (like the averaged single condition maps) on ongoing activity. We also evaluated if cooling had a differential effect on evoked and ongoing spiking activity of single units. We found that deactivating VICs caused no spatial disruption on the structure of either evoked or ongoing activity maps. The frequency with which a cardinally preferring (0º or 90º) map would emerge, however, decreased significantly for ongoing but not for evoked activity. The same result was found by training self-organizing maps with recorded data as input. Spiking activity of cardinally preferring units also decreased significantly for ongoing when compared to evoked activity. Based on our results we came to the following conclusions: 1) VICs are not a determinant factor of ongoing map structure. Maps continued to be spontaneously generated with the same quality, probably by a combination of ongoing activity from local recurrent connections, thalamocortical loop and feedback connections. 2) VICs account for a cardinal bias in the temporal sequence of ongoing activity patterns, i.e. deactivating VIC decreases the probability of cardinal maps to emerge spontaneously. 3) Inter- and intrahemispheric long-range connections might serve as a grid preparing primary visual cortex for likely junctions in a larger visual environment encompassing the two hemifields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il segnale elettrico si propaga nel tessuto cardiaco attraverso gap-junctions che si trovano tra i miociti cardiaci e in ciascuno di essi si avvia un processo chiamato potenziale d'azione (PA). In questa tesi prenderò in considerazione il modello Luo-Rudy 1991 e il difetto oggetto di studio sono le Early Afterdepolarizations (EADs). Si analizzerà la propagazione del potenziale d’azione in un cavo di 300 cellule. Dopo alcune simulazioni preliminari è emersa l’utilità di trovare una soluzione che permettesse di ridurre i tempi di calcolo, il modello è stato quindi implementato in CUDA. Il lavoro è stato sviluppato nei seguenti step: 1) l’impiego dell’ambiente di calcolo MATLAB per implementare il modello, descrivendo ogni cellula attraverso il modello Luo-Rudy 1991 e l’interazione elettrica inter-cellulare, considerando un cavo di 300 cellule; 2) individuazione dei parametri che, adeguatamente modificati, sono in grado di indurre EADs a livello single cell; 3) implementazione del modello in CUDA, creando uno strumento che potrà essere utilizzato per aumentare notevolmente il numero delle simulazioni nell’unità di tempo; 4) messa a punto di un criterio per valutare in modo conciso la bontà (safety factor) della relazione source-sink. L’utilità di un simile criterio è quella di valutare, sia nel caso di propagazione di AP che in quello di eventuale propagazione di EADs, la propensione alla propagazione in un tessuto. Il primo capitolo descriverà il potenziale d’azione, il modello usato e la teoria del cavo. Il secondo capitolo discuterà l’implementazione del modello usato, descriverà CUDA e come il modello sia stato implementato. Il terzo capitolo riguarderà i primi risultati ottenuti dalle simulazioni e come la variazione dei parametri influisce sulla forma delle EADs. L’ultimo capitolo approfondirà i requisiti necessari per far avvenire una propagazione in un cavo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El Ap4A es una molécula con un amplio papel biológico en el ojo. Se ha descrito su implicación en procesos de secreción lagrimal, cicatrización epitelial, regulación de la presión intraocular, y presenta también un papel neuroprotector sobre los terminales simpáticos que inervan el cuerpo ciliar. El objetivo de este trabajo ha sido analizar la participación del Ap4A en otras posibles funciones a nivel ocular. En concreto se ha estudiado la capacidad de este dinucléotido para estimular la liberación de proteínas lagrimales de acción antibacteriana tales como la lisozima y la lactoferrina. Por otra parte se ha investigado su efecto como modulador de la función de barrera de la córnea a través de la regulación de los niveles de expresión de proteínas constituyentes de las tight junctions (TJ). Dicho efecto sobre la barrera puede tener una importante repercusión en la entrada de fármacos y en la consiguiente eficacia terapéutica de los mismos. Por último, se ha estudiado la posible implicación del dinucleótido en el proceso de edematización descrito en modelos animales glaucomatosos tales como el ratón DBA/2J. Con el objetivo de averiguar si la activación de Ap4A inducía un efecto sobre la producción de dos proteínas antimicrobianas relevantes de la lágrima (lisozima y lactoferrina) se realizaron ensayos en la lágrima de conejos albinos de Nueva Zelanda, mediante las técnicas de agar-agar y ELISA. Los resultados obtenidos demostraron que Ap4A produce un aumento en la concentración de lisozima y de lactoferrina del 93% y 24%, respectivamente, frente a valores basales, y este efecto está mediado por receptores de tipo P2...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modulation of cell : cell junctions is a key event in cutaneous wound repair. In this study we report that activation of the epidermal growth factor (EGF) receptor disrupts cell : cell adhesion, but with different kinetics and fates for the desmosomal cadherin desmoglein and for E-cadherin. Downregulation of desmoglein preceded that of E-cadherin in vivo and in an EGF-stimulated in vitro wound reepithelialization model. Dual immunofluorescence staining revealed that neither E-cadherin nor desmoglein-2 internalized with the EGF receptor, or with one another. In response to EGF, desmoglein-2 entered a recycling compartment based on predominant colocalization with the recycling marker Rab11. In contrast, E-cadherin downregulation was accompanied by cleavage of the extracellular domain. A broad-spectrum matrix metalloproteinase inhibitor protected E-cadherin but not the desmosomal cadherin, desmoglein-2, from EGF-stimulated disruption. These findings demonstrate that although activation of the EGF receptor regulates adherens junction and desmosomal components, this stimulus downregulates associated cadherins through different mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burn injuries in the United States account for over one million hospital admissions per year, with treatment estimated at four billion dollars. Of severe burn patients, 30-90% will develop hypertrophic scars (HSc). Current burn therapies rely upon the use of bioengineered skin equivalents (BSEs), which assist in wound healing but do not prevent HSc. HSc contraction occurs of 6-18 months and results in the formation of a fixed, inelastic skin deformity, with 60% of cases occurring across a joint. HSc contraction is characterized by abnormally high presence of contractile myofibroblasts which normally apoptose at the completion of the proliferative phase of wound healing. Additionally, clinical observation suggests that the likelihood of HSc is increased in injuries with a prolonged immune response. Given the pathogenesis of HSc, we hypothesize that BSEs should be designed with two key anti-scarring characterizes: (1) 3D architecture and surface chemistry to mitigate the inflammatory microenvironment and decrease myofibroblast transition; and (2) using materials which persist in the wound bed throughout the remodeling phase of repair. We employed electrospinning and 3D printing to generate scaffolds with well-controlled degradation rate, surface coatings, and 3D architecture to explore our hypothesis through four aims.

In the first aim, we evaluate the impact of elastomeric, randomly-oriented biostable polyurethane (PU) scaffold on HSc-related outcomes. In unwounded skin, native collagen is arranged randomly, elastin fibers are abundant, and myofibroblasts are absent. Conversely, in scar contractures, collagen is arranged in linear arrays and elastin fibers are few, while myofibroblast density is high. Randomly oriented collagen fibers native to the uninjured dermis encourage random cell alignment through contact guidance and do not transmit as much force as aligned collagen fibers. However, the linear ECM serves as a system for mechanotransduction between cells in a feed-forward mechanism, which perpetuates ECM remodeling and myofibroblast contraction. The electrospinning process allowed us to create scaffolds with randomly-oriented fibers that promote random collagen deposition and decrease myofibroblast formation. Compared to an in vitro HSc contraction model, fibroblast-seeded PU scaffolds significantly decreased matrix and myofibroblast formation. In a murine HSc model, collagen coated PU (ccPU) scaffolds significantly reduced HSc contraction as compared to untreated control wounds and wounds treated with the clinical standard of care. The data from this study suggest that electrospun ccPU scaffolds meet the requirements to mitigate HSc contraction including: reduction of in vitro HSc related outcomes, diminished scar stiffness, and reduced scar contraction. While clinical dogma suggests treating severe burn patients with rapidly biodegrading skin equivalents, these data suggest that a more long-term scaffold may possess merit in reducing HSc.

In the second aim, we further investigate the impact of scaffold longevity on HSc contraction by studying a degradable, elastomeric, randomly oriented, electrospun micro-fibrous scaffold fabricated from the copolymer poly(l-lactide-co-ε-caprolactone) (PLCL). PLCL scaffolds displayed appropriate elastomeric and tensile characteristics for implantation beneath a human skin graft. In vitro analysis using normal human dermal fibroblasts (NHDF) demonstrated that PLCL scaffolds decreased myofibroblast formation as compared to an in vitro HSc contraction model. Using our murine HSc contraction model, we found that HSc contraction was significantly greater in animals treated with standard of care, Integra, as compared to those treated with collagen coated-PLCL (ccPLCL) scaffolds at d 56 following implantation. Finally, wounds treated with ccPLCL were significantly less stiff than control wounds at d 56 in vivo. Together, these data further solidify our hypothesis that scaffolds which persist throughout the remodeling phase of repair represent a clinically translatable method to prevent HSc contraction.

In the third aim, we attempt to optimize cell-scaffold interactions by employing an anti-inflammatory coating on electrospun PLCL scaffolds. The anti-inflammatory sub-epidermal glycosaminoglycan, hyaluronic acid (HA) was used as a coating material for PLCL scaffolds to encourage a regenerative healing phenotype. To minimize local inflammation, an anti-TNFα monoclonal antibody (mAB) was conjugated to the HA backbone prior to PLCL coating. ELISA analysis confirmed mAB activity following conjugation to HA (HA+mAB), and following adsorption of HA+mAB to the PLCL backbone [(HA+mAB)PLCL]. Alican blue staining demonstrated thorough HA coating of PLCL scaffolds using pressure-driven adsorption. In vitro studies demonstrated that treatment with (HA+mAB)PLCL prevented downstream inflammatory events in mouse macrophages treated with soluble TNFα. In vivo studies using our murine HSc contraction model suggested positive impact of HA coating, which was partiall impeded by the inclusion of the TNFα mAB. Further characterization of the inflammatory microenvironment of our murine model is required prior to conclusions regarding the potential for anti-TNFα therapeutics for HSc. Together, our data demonstrate the development of a complex anti-inflammatory coating for PLCL scaffolds, and the potential impact of altering the ECM coating material on HSc contraction.

In the fourth aim, we investigate how scaffold design, specifically pore dimensions, can influence myofibroblast interactions and subsequent formation of OB-cadherin positive adherens junctions in vitro. We collaborated with Wake Forest University to produce 3D printed (3DP) scaffolds with well-controlled pore sizes we hypothesized that decreasing pore size would mitigate intra-cellular communication via OB-cadherin-positive adherens junctions. PU was 3D printed via pressure extrusion in basket-weave design with feature diameter of ~70 µm and pore sizes of 50, 100, or 150 µm. Tensile elastic moduli of 3DP scaffolds were similar to Integra; however, flexural moduli of 3DP were significantly greater than Integra. 3DP scaffolds demonstrated ~50% porosity. 24 h and 5 d western blot data demonstrated significant increases in OB-cadherin expression in 100 µm pores relative to 50 µm pores, suggesting that pore size may play a role in regulating cell-cell communication. To analyze the impact of pore size in these scaffolds on scarring in vivo, scaffolds were implanted beneath skin graft in a murine HSc model. While flexural stiffness resulted in graft necrosis by d 14, cellular and blood vessel integration into scaffolds was evident, suggesting potential for this design if employed in a less stiff material. In this study, we demonstrate for the first time that pore size alone impacts OB-cadherin protein expression in vitro, suggesting that pore size may play a role on adherens junction formation affiliated with the fibroblast-to-myofibroblast transition. Overall, this work introduces a new bioengineered scaffold design to both study the mechanism behind HSc and prevent the clinical burden of this contractile disease.

Together, these studies inform the field of critical design parameters in scaffold design for the prevention of HSc contraction. We propose that scaffold 3D architectural design, surface chemistry, and longevity can be employed as key design parameters during the development of next generation, low-cost scaffolds to mitigate post-burn hypertrophic scar contraction. The lessening of post-burn scarring and scar contraction would improve clinical practice by reducing medical expenditures, increasing patient survival, and dramatically improving quality of life for millions of patients worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advanced doping technologies are key for the continued scaling of semiconductor devices and the maintenance of device performance beyond the 14 nm technology node. Due to limitations of conventional ion-beam implantation with thin body and 3D device geometries, techniques which allow precise control over dopant diffusion and concentration, in addition to excellent conformality on 3D device surfaces, are required. Spin-on doping has shown promise as a conventional technique for doping new materials, particularly through application with other dopant methods, but may not be suitable for conformal doping of nanostructures. Additionally, residues remain after most spin-on-doping processes which are often difficult to remove. In-situ doping of nanostructures is especially common for bottom-up grown nanostructures but problems associated with concentration gradients and morphology changes are commonly experienced. Monolayer doping (MLD) has been shown to satisfy the requirements for extended defect-free, conformal and controllable doping on many materials ranging from traditional silicon and germanium devices to emerging replacement materials such as III-V compounds but challenges still remain, especially with regard to metrology and surface chemistry at such small feature sizes. This article summarises and critically assesses developments over the last number of years regarding the application of gas and solution phase techniques to dope silicon-, germanium- and III-V-based materials and nanostructures to obtain shallow diffusion depths coupled with high carrier concentrations and abrupt junctions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic Functionalisation, Doping and Characterisation of Semiconductor Surfaces for Future CMOS Device Applications Semiconductor materials have long been the driving force for the advancement of technology since their inception in the mid-20th century. Traditionally, micro-electronic devices based upon these materials have scaled down in size and doubled in transistor density in accordance with the well-known Moore’s law, enabling consumer products with outstanding computational power at lower costs and with smaller footprints. According to the International Technology Roadmap for Semiconductors (ITRS), the scaling of metal-oxide-semiconductor field-effect transistors (MOSFETs) is proceeding at a rapid pace and will reach sub-10 nm dimensions in the coming years. This scaling presents many challenges, not only in terms of metrology but also in terms of the material preparation especially with respect to doping, leading to the moniker “More-than-Moore”. Current transistor technologies are based on the use of semiconductor junctions formed by the introduction of dopant atoms into the material using various methodologies and at device sizes below 10 nm, high concentration gradients become a necessity. Doping, the controlled and purposeful addition of impurities to a semiconductor, is one of the most important steps in the material preparation with uniform and confined doping to form ultra-shallow junctions at source and drain extension regions being one of the key enablers for the continued scaling of devices. Monolayer doping has shown promise to satisfy the need to conformally dope at such small feature sizes. Monolayer doping (MLD) has been shown to satisfy the requirements for extended defect-free, conformal and controllable doping on many materials ranging from the traditional silicon and germanium devices to emerging replacement materials such as III-V compounds This thesis aims to investigate the potential of monolayer doping to complement or replace conventional doping technologies currently in use in CMOS fabrication facilities across the world.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cerebral malaria is characterized by cytoadhesion of Plasmodium falciparum–infected red blood cells (Pf-iRBCs) to endothelial cells in the brain, disruption of the blood-brain barrier, and cerebral microhemorrhages. No available antimalarial drugs specifically target the endothelial disruptions underlying this complication, which is responsible for the majority of malaria-associated deaths. Here, we have demonstrated that ruptured Pf-iRBCs induce activation of β-catenin, leading to disruption of inter–endothelial cell junctions in human brain microvascular endothelial cells (HBMECs). Inhibition of β-catenin–induced TCF/LEF transcription in the nucleus of HBMECs prevented the disruption of endothelial junctions, confirming that β-catenin is a key mediator of P. falciparum adverse effects on endothelial integrity. Blockade of the angiotensin II type 1 receptor (AT1) or stimulation of the type 2 receptor (AT2) abrogated Pf-iRBC–induced activation of β-catenin and prevented the disruption of HBMEC monolayers. In a mouse model of cerebral malaria, modulation of angiotensin II receptors produced similar effects, leading to protection against cerebral malaria, reduced cerebral hemorrhages, and increased survival. In contrast, AT2-deficient mice were more susceptible to cerebral malaria. The interrelation of the β-catenin and the angiotensin II signaling pathways opens immediate host-targeted therapeutic possibilities for cerebral malaria and other diseases in which brain endothelial integrity is compromised.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work presented in this thesis examines the properties of BPEs of various configurations and under different operating conditions in a large planar LEC system. Detailed analysis of time-lapsed fluorescence images allows us to calculate the doping propagation speed from the BPEs. By introducing a linear array of BPEs or dispersed ITO particles, multiple light-emitting junctions or a bulk homojunction have been demonstrated. In conclusion, it has been observed that both applied bias voltages and sizes of BPEs affected the electrochemical doping from the BPE. If the applied bias voltage was initially not sufficiently high enough, a delay in appearance of doping from the BPE would take place. Experiments of parallel BPEs with different sizes (large, medium, small) demonstrate that the potential difference across the BPEs has played a vital role in doping initiation. Also, the p-doping propagation distance from medium-sized BPE has displayed an exponential growth over the time-span of 70 seconds. Experiments with a linear array of BPEs with the same size demonstrate that the doping propagation speed of each floating BPE was the same regardless of its position between the driving electrodes. Probing experiments under high driving voltages further demonstrated the potential of having a much more efficient light emission from an LEC with multiple BPEs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present article, two new types of PML/RARA junctions are described. Both were identified in diagnostic samples from two t(15;17)(q22;q21)-positive acute promyelocytic leukemia (APL) patients who failed to achieve complete remission. By using different sets of primers, reverse transcriptase polymerase chain reaction (RT-PCR) of PML/RARA junctions showed atypical larger bands compared with those generated from the three classical PML breakpoints already described. Sequence analysis of the fusion region of the amplified cDNAs allowed us to determine the specificity of these fragments in both patients. This analysis showed two new hybrid transcripts that were 53 and 306 base pairs (bp) longer than that expressed by the NB4 cell line (PML breakpoint within intron 6), and are the result of the direct joining of RARA exon 3 with PML exon 7a (patient 2) or the 5' portion of PML exon 7b (patient 1), respectively. In patient 1, RT-PCR analysis of the reciprocal RARA/PML junction showed a smaller transcript than that expected in bcr1 cases, while in patient 2 no amplified fragment was obtained. Cytogenetic analysis and/or fluorescence in situ hybridization (FISH) showed that both patients had the t(15;17) translocation. The clinical and hematological profiles expressed by the two patients carrying these unexpected types of PML/RARA rearrangement did not differ significantly from that commonly seen in other APLs with the exception of the poor outcome. Genes Chromosomes Cancer 27:35-43, 2000.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-dimensional (2D) materials have generated great interest in the last few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2) and insulating Boron Nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency and favorable transport properties for realizing electronic, sensing and optical systems on arbitrary surfaces. In this work, we develop several etch stop layer technologies that allow the fabrication of complex 2D devices and present for the first time the large scale integration of graphene with molybdenum disulfide (MoS2) , both grown using the fully scalable CVD technique. Transistor devices and logic circuits with MoS2 channel and graphene as contacts and interconnects are constructed and show high performances. In addition, the graphene/MoS2 heterojunction contact has been systematically compared with MoS2-metal junctions experimentally and studied using density functional theory. The tunability of the graphene work function significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on 2D heterostructure pave the way for practical flexible transparent electronics in the future. The authors acknowledge financial support from the Office of Naval Research (ONR) Young Investigator Program, the ONR GATE MURI program, and the Army Research Laboratory. This research has made use of the MI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have fabricated a new van-der-Waals heterostructure composed by BN/graphene/C60. We performed transport measurements on the preliminary BN/graphene device finding a sharp Dirac point at the neutrality point. After the deposition of a C60 thin film by thermal evaporation, we have observed a significant n-doping of the heterostructure. This suggests an unusual electron transfer from C60 into the BN/graphene structure. This BN/graphene/C60 heterostructure can be of interest in photovoltaic applications. It can be used to build devices like p-n junctions, where C60 can be easily deposited in defined regions of a graphene junction by the use of a shadow mask. Our results are contrasted with theoretical calculations.