1000 resultados para Iwasawa Theory


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new formulation derived from thermal characters of inclusions and host films for estimating laser induced damage threshold has been deduced. This formulation is applicable for dielectric films when they are irradiated by laser beam with pulse width longer than tens picoseconds. This formulation can interpret the relationship between pulse-width and damage threshold energy density of laser pulse obtained experimentally. Using this formulation, we can analyze which kind of inclusion is the most harmful inclusion. Combining it with fractal distribution of inclusions, we have obtained an equation which describes relationship between number density of inclusions and damage probability. Using this equation, according to damage probability and corresponding laser energy density, we can evaluate the number density and distribution in size dimension of the most harmful inclusions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct an F(R) gravity theory corresponding to the Weyl invariant two scalar field theory. We investigate whether such F (R) gravity can have the antigravity regions where the Weyl curvature invariant does not diverge at the Big Bang and Big Crunch singularities. It is revealed that the divergence cannot be evaded completely but can be much milder than that in the original Weyl invariant two scalar field theory. (C) 2014 The Authors. Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this dissertation is to study the theory of distributions and some of its applications. Certain concepts which we would include in the theory of distributions nowadays have been widely used in several fields of mathematics and physics. It was Dirac who first introduced the delta function as we know it, in an attempt to keep a convenient notation in his works in quantum mechanics. Their work contributed to open a new path in mathematics, as new objects, similar to functions but not of their same nature, were being used systematically. Distributions are believed to have been first formally introduced by the Soviet mathematician Sergei Sobolev and by Laurent Schwartz. The aim of this project is to show how distribution theory can be used to obtain what we call fundamental solutions of partial differential equations.