932 resultados para Interface finite element
Resumo:
Tämän insinöörityön tarkoituksena on kehittää avaruusinstrumentti, joka on osa Euroopan avaruusjärjestön ESA:n ja Japanin avaruusjärjestön JAXA:n BepiColombo-yhteistyöhanketta. Satelliitti lähetetään Merkurius-planeetan kiertoradalle vuonna 2013. Avaruusaluksen matka Merkuriukseen kestää yhteensä kuusi vuotta ja on perillä vuonna 2019. Yksi BepiColombo-satelliitin tieteellisistä instrumenteista on Oxford Instruments Analytical Oy:n kehittämä SIXS-instrumentti (Solar Intensity X-ray and particle Spectrometer). Instrumentin tarkoituksena on mitata auringosta tulevaa röntgen- ja partikkelisäteilyä. Se toimii yhteistyössä Merkuriuksen pintaa mittaavan MIXS-instrumentin (Mercury Imaging X-ray Spectrometer) kanssa. Tuloksista pystytään analysoimaan ne alkuaineet, joista Merkuriuksen pinta koostuu. Työn alussa esitellään teoriataustaa alkuaineiden mittauksesta niiltä osin, kuin se tämän työn kannalta on tarpeellista. Työssä syvennytään tarkemmin auringosta tulevan säteilyn mittauksesta vastaavan instrumentin tekniikkaan ja mekaniikkasuunnitteluun. Instrumentin lämpöteknisestä suunnittelusta, värähtelymittauksista ja lujuusanalyysista on työhön sisällytetty pääasiat. Työn tuloksena on kehitetty instrumenttiin tulevan partikkelidetektorin prototyyppi sekä instrumenttikotelon malli. Lopullisen koon instrumenttikotelolle määrittää vaadittavan elektroniikan viemä tila. Mittalaitteen kehitystyö jatkuu Oxford Instruments Analytical Oy:ssä vuoteen 2011 saakka.
Resumo:
A successful bone tissue engineering strategy entails producing bone-scaffold constructs with adequate mechanical properties. Apart from the mechanical properties of the scaffold itself, the forming bone inside the scaffold also adds to the strength of the construct. In this study, we investigated the role of in vivo cyclic loading on mechanical properties of a bone scaffold. We implanted PLA/β-TCP scaffolds in the distal femur of six rats, applied external cyclic loading on the right leg, and kept the left leg as a control. We monitored bone formation at 7 time points over 35 weeks using time-lapsed micro-computed tomography (CT) imaging. The images were then used to construct micro-finite element models of bone-scaffold constructs, with which we estimated the stiffness for each sample at all time points. We found that loading increased the stiffness by 60% at 35 weeks. The increase of stiffness was correlated to an increase in bone volume fraction of 18% in the loaded scaffold compared to control scaffold. These changes in volume fraction and related stiffness in the bone scaffold are regulated by two independent processes, bone formation and bone resorption. Using time-lapsed micro-CT imaging and a newly-developed longitudinal image registration technique, we observed that mechanical stimulation increases the bone formation rate during 4-10 weeks, and decreases the bone resorption rate during 9-18 weeks post-operatively. For the first time, we report that in vivo cyclic loading increases mechanical properties of the scaffold by increasing the bone formation rate and decreasing the bone resorption rate.
Resumo:
HYPOTHESIS: Supraspinatus deficiency associated with total shoulder arthroplasty (TSA) provokes eccentric loading and may induce loosening of the glenoid component. A downward inclination of the glenoid component has been proposed to balance supraspinatus deficiency. METHODS: This hypothesis was assessed by a numeric musculoskeletal model of the glenohumeral joint during active abduction. Three cases were compared: TSA with normal muscular function, TSA with supraspinatus deficiency, and TSA with supraspinatus deficiency and downward inclination of the glenoid. RESULTS: Supraspinatus deficiency increased humeral migration and eccentric loading. A downward inclination of the glenoid partly balanced the loss of stability, but this potential advantage was counterbalanced by an important stress increase within the glenoid cement. The additional subchondral bone reaming required to incline the glenoid component indeed reduced the bone support, increasing cement deformation and stress. CONCLUSION: Glenoid inclination should not be obtained at the expense of subchondral bone support.
Resumo:
We have modeled numerically the seismic response of a poroelastic inclusion with properties applicable to an oil reservoir that interacts with an ambient wavefield. The model includes wave-induced fluid flow caused by pressure differences between mesoscopic-scale (i.e., in the order of centimeters to meters) heterogeneities. We used a viscoelastic approximation on the macroscopic scale to implement the attenuation and dispersion resulting from this mesoscopic-scale theory in numerical simulations of wave propagation on the kilometer scale. This upscaling method includes finite-element modeling of wave-induced fluid flow to determine effective seismic properties of the poroelastic media, such as attenuation of P- and S-waves. The fitted, equivalent, viscoelastic behavior is implemented in finite-difference wave propagation simulations. With this two-stage process, we model numerically the quasi-poroelastic wave-propagation on the kilometer scale and study the impact of fluid properties and fluid saturation on the modeled seismic amplitudes. In particular, we addressed the question of whether poroelastic effects within an oil reservoir may be a plausible explanation for low-frequency ambient wavefield modifications observed at oil fields in recent years. Our results indicate that ambient wavefield modification is expected to occur for oil reservoirs exhibiting high attenuation. Whether or not such modifications can be detected in surface recordings, however, will depend on acquisition design and noise mitigation processing as well as site-specific conditions, such as the geologic complexity of the subsurface, the nature of the ambient wavefield, and the amount of surface noise.
Resumo:
Introduction: The posterior inclination of the tibial component is an important factor that can affect the success of total knee arthroplasty. It can reduce the posterior impingement and thus increase the range of flexion, but it may also induce instability in flexion, anterior impingement between the polyethylene of postero-stabilizing knee prosthesis, and anterior conflict with the cortical bone and the stem. Although the problem is identified, there is still a debate on the ideal inclination angle and the surgical technique to avoid an excessive posterior inclination. The aim of this study was to predict the effect of a posterior inclination of the tibial component on the contact pattern on the tibial insert, using a numerical musculoskeletal model of the knee joint. Methods: A 3D finite element model of the knee joint was developed to simulate an active and loaded squat movement after total knee arthroplasty. Flexion was actively controlled by the quadriceps muscle and muscle activations were estimated from EMG data and were synchronized by a feedback algorithm. Two inclinations of the tibial tray were considered: a posterior inclination of 0° or 10°. During the entire range of flexion, the following quantities were calculated: the tibiofemoral and patello-femoral contact force, and the contact pattern on polyethylene insert. The antero-posterior displacement of the contact pattern was also measured. Abaqus 6.7 was used for all analyses. Results: The tibio-femoral and patello-femoral contact forces increased during flexion and reached respectively 4 and 7 BW (bodyweight) at 90° of flexion. They were slightly affected by the inclination of the tibial tray. Without posterior inclination, the contact pattern on the tibial insert remained centered. The contact pressure was lower than 5 MPa below 60° of flexion, but exceeded 20 MPa at 90° of flexion. The posterior inclination displaced the contact point posteriorly by 2 to 4 mm. Conclusion: The inclination of the tibial tray displaced the contactpattern towards the posterior border of the tibial insert. However, even for 10° of inclination, the contact center remained far from the posterior border (12 mm). There was no instability predicted for this movement.
Resumo:
Vertebroplasty and kyphoplasty have been reported to alter the mechanical behavior of the treated and adjacent-level segments, and have been suggested to increase the risk for adjacent-level fractures. The intervertebral disc (IVD) plays an important role in the mechanical behavior of vertebral motion segments. Comparisons between normal and degenerative IVD motion segments following cement augmentation have yet to be reported. A microstructural finite element model of a degenerative IVD motion segment was constructed from micro-CT images. Microdamage within the vertebral body trabecular structure was used to simulate a slightly (I = 83.5% of intact stiffness), moderately (II = 57.8% of intact stiffness), and severely (III = 16.0% of intact stiffness) damaged motion segment. Six variable geometry single-segment cement repair strategies (models A-F) were studied at each damage level (I-III). IVD and bone stresses, and motion segment stiffness, were compared with the intact and baseline damage models (untreated), as well as, previous findings using normal IVD models with the same repair strategies. Overall, small differences were observed in motion segment stiffness and average stresses between the degenerative and normal disc repair models. We did however observe a reduction in endplate bulge and a redistribution in the microstructural tissue level stresses across both endplates and in the treated segment following early stage IVD degeneration. The cement augmentation strategy placing bone cement along the periphery of the vertebra (model E) proved to be the most advantageous in treating the degenerative IVD models by showing larger reductions in the average bone stresses (vertebral and endplate) as compared to the normal IVD models. Furthermore, only this repair strategy, and the complete cement fill strategy (model F), were able to restore the slightly damaged (I) motion segment stiffness above pre-damaged (intact) levels. Early stage IVD degeneration does not have an appreciable effect in motion segment stiffness and average stresses in the treated and adjacent-level segments following vertebroplasty and kyphoplasty. Placing bone cement in the periphery of the damaged vertebra in a degenerative IVD motion segment, minimizes load transfer, and may reduce the likelihood of adjacent-level fractures.
Resumo:
We are interested in the development, implementation and testing of an orthotropic model for cardiac contraction based on an active strain decomposition. Our model addresses the coupling of a transversely isotropic mechanical description at the cell level, with an orthotropic constitutive law for incompressible tissue at the macroscopic level. The main differences with the active stress model are addressed in detail, and a finite element discretization using Taylor-Hood and MINI elements is proposed and illustrated with numerical examples.
Resumo:
A new technology for the three-dimensional (3-D) stacking of very thin chips on a substrate is currently under development within the ultrathin chip stacking (UTCS) Esprit Project 24910. In this work, we present the first-level UTCS structure and the analysis of the thermomechanical stresses produced by the manufacturing process. Chips are thinned up to 10 or 15 m. We discuss potentially critical points at the edges of the chips, the suppression of delamination problems of the peripheral dielectric matrix and produce a comparative study of several technological choices for the design of metallic interconnect structures. The purpose of these calculations is to give inputs for the definition of design rules for this technology. We have therefore undertaken a programme that analyzes the influence of sundry design parameters and alternative development options. Numerical analyses are based on the finite element method.
Resumo:
We present an analytical model to interpret nanoscale capacitance microscopy measurements on thin dielectric films. The model displays a logarithmic dependence on the tip-sample distance and on the film thickness-dielectric constant ratio and shows an excellent agreement with finite-element numerical simulations and experimental results on a broad range of values. Based on these results, we discuss the capabilities of nanoscale capacitance microscopy for the quantitative extraction of the dielectric constant and the thickness of thin dielectric films at the nanoscale.
Resumo:
This paper presents a thermal modeling for power management of a new three-dimensional (3-D) thinned dies stacking process. Besides the high concentration of power dissipating sources, which is the direct consequence of the very interesting integration efficiency increase, this new ultra-compact packaging technology can suffer of the poor thermal conductivity (about 700 times smaller than silicon one) of the benzocyclobutene (BCB) used as both adhesive and planarization layers in each level of the stack. Thermal simulation was conducted using three-dimensional (3-D) FEM tool to analyze the specific behaviors in such stacked structure and to optimize the design rules. This study first describes the heat transfer limitation through the vertical path by examining particularly the case of the high dissipating sources under small area. First results of characterization in transient regime by means of dedicated test device mounted in single level structure are presented. For the design optimization, the thermal draining capabilities of a copper grid or full copper plate embedded in the intermediate layer of stacked structure are evaluated as a function of the technological parameters and the physical properties. It is shown an interest for the transverse heat extraction under the buffer devices dissipating most the power and generally localized in the peripheral zone, and for the temperature uniformization, by heat spreading mechanism, in the localized regions where the attachment of the thin die is altered. Finally, all conclusions of this analysis are used for the quantitative projections of the thermal performance of a first demonstrator based on a three-levels stacking structure for space application.
Resumo:
Whereas numerical modeling using finite-element methods (FEM) can provide transient temperature distribution in the component with enough accuracy, it is of the most importance the development of compact dynamic thermal models that can be used for electrothermal simulation. While in most cases single power sources are considered, here we focus on the simultaneous presence of multiple sources. The thermal model will be in the form of a thermal impedance matrix containing the thermal impedance transfer functions between two arbitrary ports. Eachindividual transfer function element ( ) is obtained from the analysis of the thermal temperature transient at node ¿ ¿ after a power step at node ¿ .¿ Different options for multiexponential transient analysis are detailed and compared. Among the options explored, small thermal models can be obtained by constrained nonlinear least squares (NLSQ) methods if the order is selected properly using validation signals. The methods are applied to the extraction of dynamic compact thermal models for a new ultrathin chip stack technology (UTCS).
Resumo:
The study of the thermal behavior of complex packages as multichip modules (MCM¿s) is usually carried out by measuring the so-called thermal impedance response, that is: the transient temperature after a power step. From the analysis of this signal, the thermal frequency response can be estimated, and consequently, compact thermal models may be extracted. We present a method to obtain an estimate of the time constant distribution underlying the observed transient. The method is based on an iterative deconvolution that produces an approximation to the time constant spectrum while preserving a convenient convolution form. This method is applied to the obtained thermal response of a microstructure as analyzed by finite element method as well as to the measured thermal response of a transistor array integrated circuit (IC) in a SMD package.
Resumo:
A novel laboratory technique is proposed to investigate wave-induced fluid flow on the mesoscopic scale as a mechanism for seismic attenuation in partially saturated rocks. This technique combines measurements of seismic attenuation in the frequency range from 1 to 100?Hz with measurements of transient fluid pressure as a response of a step stress applied on top of the sample. We used a Berea sandstone sample partially saturated with water. The laboratory results suggest that wave-induced fluid flow on the mesoscopic scale is dominant in partially saturated samples. A 3-D numerical model representing the sample was used to verify the experimental results. Biot's equations of consolidation were solved with the finite-element method. Wave-induced fluid flow on the mesoscopic scale was the only attenuation mechanism accounted for in the numerical solution. The numerically calculated transient fluid pressure reproduced the laboratory data. Moreover, the numerically calculated attenuation, superposed to the frequency-independent matrix anelasticity, reproduced the attenuation measured in the laboratory in the partially saturated sample. This experimental?numerical fit demonstrates that wave-induced fluid flow on the mesoscopic scale and matrix anelasticity are the dominant mechanisms for seismic attenuation in partially saturated Berea sandstone.
Resumo:
At seismic frequencies, wave-induced fluid flow is a major cause of P-wave attenuation in partially saturated porous rocks. Attenuation is of great importance for the oil industry in the interpretation of seismic field data. Here, the effects on P-wave attenuation resulting from changes in oil saturation are studied for media with coexisting water, oil, and gas. For that, creep experiments are numerically simulated by solving Biot's equations for consolidation of poroelastic media with the finite-element method. The experiments yield time-dependent stress?strain relations that are used to calculate the complex P-wave modulus from which frequency-dependent P-wave attenuation is determined. The models are layered media with periodically alternating triplets of layers. Models consisting of triplets of layers having randomly varying layer thicknesses are also considered. The layers in each triplet are fully saturated with water, oil, and gas. The layer saturated with water has lower porosity and permeability than the layers saturated with oil and gas. These models represent hydrocarbon reservoirs in which water is the wetting fluid preferentially saturating regions of lower porosity. The results from the numerical experiments showed that increasing oil saturation, connected to a decrease in gas saturation, resulted in a significant increase of attenuation at low frequencies (lower than 2 Hz). Furthermore, replacing the oil with water resulted in a distinguishable behavior of the frequency-dependent attenuation. These results imply that, according to the physical mechanism of wave-induced fluid flow, frequency-dependent attenuation in media saturated with water, oil, and gas is a potential indicator of oil saturation.
Resumo:
A Strontium ranelate appears to influence more than alendronate distal tibia bone microstructure as assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT), and biomechanically relevant parameters as assessed by micro-finite element analysis (mu FEA), over 2 years, in postmenopausal osteoporotic women.Introduction Bone microstructure changes are a target in osteoporosis treatment to increase bone strength and reduce fracture risk.Methods Using HR-pQCT, we investigated the effects on distal tibia and radius microstructure of strontium ranelate (SrRan; 2 g/day) or alendronate (70 mg/week) for 2 years in postmenopausal osteoporotic women. This exploratory randomized, double-blind trial evaluated HR-pQCT and FEA parameters, areal bone mineral density (BMD), and bone turnover markers.Results In the intention-to-treat population (n = 83, age: 64 +/- 8 years; lumbar T-score: -2.8 +/- 0.8 [DXA]), distal tibia Cortical Thickness (CTh) and Density (DCort), and cancellous BV/TV increased by 6.3%, 1.4%, and 2.5%, respectively (all P < 0.005), with SrRan, but not with alendronate (0.9%, 0.4%, and 0.8%, NS) (P < 0.05 for all above between-group differences). Difference for CTh evaluated with a distance transformation method was close to significance (P = 0.06). The estimated failure load increased with SrRan (+2.1%, P < 0.005), not with alendronate (-0.6%, NS) (between-group difference, P < 0.01). Cortical stress was lower with SrRan (P < 0.05); both treatments decreased trabecular stress. At distal radius, there was no between-group difference other than DCort (P < 0.05). Bone turnover markers decreased with alendronate; bALP increased (+21%) and serum-CTX-I decreased (-1%) after 2 years of SrRan (between-group difference at each time point for both markers, P < 0.0001). Both treatments were well tolerated.Conclusions Within the constraints of HR-pQCT method, and while a possible artefactual contribution of strontium cannot be quantified, SrRan appeared to influence distal tibia bone microstructure and FEA-determined biomechanical parameters more than alendronate. However, the magnitude of the differences is unclear and requires confirmation with another method.