911 resultados para Interactions and Diffusion
                                
Resumo:
The title compound [systematic name: 3 beta-lup-20(29)-en-3-ol], C(30)H(50)O, was isolated from the leaves of Garcinia brasiliensis (common name: bacupari; a member of the Guttiferae family) and has been shown to have many useful medicinal and biological properties. The lupeol molecule consists of four six-membered rings (adopting chair conformations) and one five-membered ring (with an envelope conformation), all fused in trans fashion. Lupeol is isomorphic with the pentacyclic triterpene 3 beta,30-dihydroxylup-20(29)-ene, which differs from lupeol due to the presence of an additional hydroxy group. The crystal packing is stabilized by van der Waals interactions and intermolecular O-H center dot center dot center dot O hydrogen bonds, giving rise to an infinite helical chain along the c axis.
                                
Resumo:
Taste receptors for sweet, bitter and umami tastants are G-protein-coupled receptors (GPCRs). While much effort has been devoted to understanding G-protein-receptor interactions and identifying the components of the signalling cascade downstream of these receptors, at the level of the G-protein the modulation of receptor signal transduction remains relatively unexplored. In this regard a taste-specific regulator of G-protein signaling (RGS), RGS21, has recently been identified. To study whether guanine nucleotide exchange factors (GEFs) are involved in the transduction of the signal downstream of the taste GPCRs we investigated the expression of Ric-8A and Ric-8B in mouse taste cells and their interaction with G-protein subunits found in taste buds. Mammalian Ric-8 proteins were initially identified as potent GEFs for a range of G alpha subunits and Ric-8B has recently been shown to amplify olfactory signal transduction. We find that both Ric-8A and Ric-8B are expressed in a large portion of taste bud cells and that most of these cells contain IP3R-3 a marker for sweet, umami and bitter taste receptor cells. Ric-8A interacts with G alpha-gustducin and G alpha i2 through which it amplifies the signal transduction of hTas2R16, a receptor for bitter compounds. Overall, these findings are consistent with a role for Ric-8 in mammalian taste signal transduction.
                                
Resumo:
The piperidone ring in the title compound, C12H15NO3S, has a slightly distorted half-chair conformation with the methyl, carbonyl and phenylsulfonyl ring substituents occupying equatorial, equatorial and axial positions, respectively. Molecules are connected into centrosymmetric dimers via C-H center dot center dot center dot O interactions and these associate into layers via C-H center dot center dot center dot O-S contacts. Further C-H center dot center dot center dot O interactions involving both the carbonyl and sulfonyl O atoms consolidate the crystal packing by providing connections between the layers.
                                
Resumo:
Objective To evaluate drug interaction software programs and determine their accuracy in identifying drug-drug interactions that may occur in intensive care units. Setting The study was developed in Brazil. Method Drug interaction software programs were identified through a bibliographic search in PUBMED and in LILACS (database related to the health sciences published in Latin American and Caribbean countries). The programs` sensitivity, specificity, and positive and negative predictive values were determined to assess their accuracy in detecting drug-drug interactions. The accuracy of the software programs identified was determined using 100 clinically important interactions and 100 clinically unimportant ones. Stockley`s Drug Interactions 8th edition was employed as the gold standard in the identification of drug-drug interaction. Main outcome Sensitivity, specificity, positive and negative predictive values. Results The programs studied were: Drug Interaction Checker (DIC), Drug-Reax (DR), and Lexi-Interact (LI). DR displayed the highest sensitivity (0.88) and DIC showed the lowest (0.69). A close similarity was observed among the programs regarding specificity (0.88-0.92) and positive predictive values (0.88-0.89). The DIC had the lowest negative predictive value (0.75) and DR the highest (0.91). Conclusion The DR and LI programs displayed appropriate sensitivity and specificity for identifying drug-drug interactions of interest in intensive care units. Drug interaction software programs help pharmacists and health care teams in the prevention and recognition of drug-drug interactions and optimize safety and quality of care delivered in intensive care units.
                                
Resumo:
This work reports on the anaerobic treatment of gasoline-contaminated groundwater in a pilot-scale horizontal-flow anaerobic immobilized biomass reactor inoculated with a methanogenic consortium. BTEX removal rates varied from 59 to 80%, with a COD removal efficiency of 95% during the 70 days of in situ trial. BTEX removal was presumably carried out by microbial syntrophic interactions, and at the observed concentrations, the interactions among the aromatic compounds may have enhanced overall biodegradation rates by allowing microbial growth instead of co-inhibiting biodegradation. There is enough evidence to support the conclusion that the pilot-scale reactor responded similarly to the lab-scale experiments previously reported for this design. (C) 2009 Elsevier Ltd. All rights reserved.
                                
Resumo:
We try to shed some light oil the question of wily technology-intensive businesses often fail in less-developed countries and under what circumstances they are likely to be a Success from the perspective of both domestic and export markets. The answers were drawn from a set of empirical evidences from Brazilian firms applying photonics technologies. Sonic of the issues faced by them are related to the question of state versus private initiative, entering traditional versus niche market, and technology transfer versus product development management. In overall, we concluded that weakness of the institutions and inadequacy of social and organizational demography play a key role in explaining to a large extent wily countries differ in technological development and diffusion. In this context, we point out obstacles, which must be removed in order to make public policies and firm`s achievements more efficient. (C) 2008 Elsevier Ltd. All rights reserved.
                                
Resumo:
Aim of the study: Alcoholic or hydroalcoholic preparations of the plant Solidago chilensis Meyen (Asteraceae) are employed in popular medicines to treat inflammation. The anti-inflammatory effects of the hydroalcoholic extract of aerial parts of the plant (93% ethanol) were investigated and the main components of the extract were identified. Materials and methods: Ear oedema was induced in male Wistar rats by topical application of the chloroform fraction of latex-extract from Euphorbia milii. Leukocyte mobilisation was quantified after air-pouch inflammation evoked by oyster glycogen. Leukocyte-endothelial interactions and mast cell degranulation were quantified by intravital microscopy. The extract itself was characterised via HPLC-DAD-MS and HPLC-MS/MS. Results: Topical (12.5-50 mg/kg) or intraperitoneal (25 or 50 mg/kg) administrations of the extract reduced ear oedema formation (>25% reduction). Intraperitoneal applications of 25 mg/kg of extract inhibited the migration of polymorphonuclear cells into the inflamed cavity (about 50%). In addition, the rolling behaviour and adherence of circulating leukocytes to postcapillary venules of the mesentery network was diminished (50%), but the mast cell degranulation in the perivascular area was not affected. The major components of the extract were identified as caffeoylquinic acid derivatives and the flavonoid rutin. Conclusions: The data presented herein show local and systemic anti-inflammatory effects of the hydroalcoholic extract of aerial parts of Solidago chilensis, and implicate the inhibition of leukocyte-endothelial interactions as an important mechanism of the extract`s action. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
                                
Resumo:
The oxidation of critical cysteines/related thiols of adenine nucleotide translocase (ANT) is believed to be an important event of the Ca(2+)-induced mitochondrial permeability transition (MPT), a process mediated by a cyclosporine A/ADP-sensitive permeability transition pores (PTP) opening. We addressed the ANT-Cys(56) relative mobility status resulting from the interaction of ANT/surrounding cardiolipins with Ca(2+) and/or ADP by means of computational chemistry analysis (Molecular Interaction Fields and Molecular Dynamics studies), supported by classic mitochondrial swelling assays. The following events were predicted: (i) Ca(2+) interacts preferentially with the ANT surrounding cardiolipins bound to the H4 helix of translocase, (ii) weakens the cardiolipins/ANT interactions and (iii) destabilizes the initial ANT-Cys(56) residue increasing its relative mobility. The binding of ADP that stabilizes the conformation ""m"" of ANT and/or cardiolipin, respectively to H5 and H4 helices, could stabilize their contacts with the short helix h56 that includes Cys(56), accounting for reducing its relative mobility. The results suggest that Ca(2+) binding to adenine nucleotide translocase (ANT)-surrounding cardiolipins in c-state of the translocase enhances (ANT)-Cys(56) relative mobility and that this may constitute a potential critical step of Ca(2+)-induced PTP opening. (C) 2009 Elsevier B.V. All rights reserved.
                                
Resumo:
The (-)-hinokinin display high activity against Trypanosoma cruzi in vitro and in vivo. (-)-Hinokinin-loaded poly(d,l-lactide-co-glycolide) microparticles were prepared and characterized in order to protect (-)-hinokinin of biological interactions and promote its sustained release for treatment of Chagas disease. The microparticles contain (-)-hinokinin were prepared by the classical method of the emulsion/solvent evaporation. The scanning electron microscopy, light-scattering analyzer were used to study the morphology and particle size, respectively. The encapsulation efficiency was determined, drug release studies were kinetically evaluated, and the trypanocidal effect was evaluated in vivo. (-)-Hinokinin-loaded microparticles obtained showed a mean diameter of 0.862 A mu m with smooth surface and spherical shape. The encapsulation efficiency was 72.46 A +/- 2.92% and developed system maintained drug release with Higuchi kinetics. The preparation method showed to be suitable, since the morphological characteristics, encapsulation efficiency, and in vitro release profile were satisfactory. In vivo assays showed significant reduction of mice parasitaemia after administration of (-)-hinokinin-loaded microparticles. Thus, the developed microparticles seem to be a promising system for sustained release of (-)-hinokinin for treatment of Chagas disease.
                                
Resumo:
Background/Aims: It is a challenge to adapt traditional in vitro diffusion experiments to ocular tissue. Thus, the aim of this work was to present experimental evidence on the integrity of the porcine cornea, barrier function and maintenance of electrical properties for 6 h of experiment when the tissue is mounted on an inexpensive and easy-to-use in vitro model for ocular iontophoresis. Methods: A modified Franz diffusion cell containing two ports for the insertion of the electrodes and a receiving compartment that does not need gassing with carbogen was used in the studies. Corneal electron transmission microscopy images were obtained, and diffusion experiments with fluorescent markers were performed to examine the integrity of the barrier function. The preservation of the negatively charged corneal epithelium was verified by the determination of the electro-osmotic flow of a hydrophilic and non-ionized molecule. Results: The diffusion cell was able to maintain the temperature, homogenization, porcine epithelial corneal structure integrity, barrier function and electrical characteristics throughout the 6 h of permeation experiment, without requiring CO(2) gassing when the receiving chamber was filled with 25 m M of HEPES buffer solution. Conclusion: The system described here is inexpensive, easy to handle and reliable as an in vitro model for iontophoretic ocular delivery studies. Copyright (C) 2010 S. Karger AG, Basel
                                
Resumo:
The process of stimulated Raman adiabatic passage (STIRAP) provides a possible route for the generation of a coherent molecular Bose-Einstein condensate (BEC) from an atomic BEC. We analyze this process in a three-dimensional mean-field theory, including atom-atom interactions and nonresonant intermediate levels. We find that the process is feasible, but at larger Rabi frequencies than anticipated from a crude single-mode lossless analysis, due to two-photon dephasing caused by the atomic interactions. We then identify optimal strategies in STIRAP allowing one to maintain high conversion efficiencies with smaller Rabi frequencies and under experimentally less demanding conditions.
 
                    