924 resultados para Input and outputs
Resumo:
Tracking activities during daily life and assessing movement parameters is essential for complementing the information gathered in confined environments such as clinical and physical activity laboratories for the assessment of mobility. Inertial measurement units (IMUs) are used as to monitor the motion of human movement for prolonged periods of time and without space limitations. The focus in this study was to provide a robust, low-cost and an unobtrusive solution for evaluating human motion using a single IMU. First part of the study focused on monitoring and classification of the daily life activities. A simple method that analyses the variations in signal was developed to distinguish two types of activity intervals: active and inactive. Neural classifier was used to classify active intervals; the angle with respect to gravity was used to classify inactive intervals. Second part of the study focused on extraction of gait parameters using a single inertial measurement unit (IMU) attached to the pelvis. Two complementary methods were proposed for gait parameters estimation. First method was a wavelet based method developed for the estimation of gait events. Second method was developed for estimating step and stride length during level walking using the estimations of the previous method. A special integration algorithm was extended to operate on each gait cycle using a specially designed Kalman filter. The developed methods were also applied on various scenarios. Activity monitoring method was used in a PRIN’07 project to assess the mobility levels of individuals living in a urban area. The same method was applied on volleyball players to analyze the fitness levels of them by monitoring their daily life activities. The methods proposed in these studies provided a simple, unobtrusive and low-cost solution for monitoring and assessing activities outside of controlled environments.
Resumo:
Recently, the increasing interest in organic food products and environmental friendly practices has emphasized the importance of selecting crop varieties suitable for the low-input systems. Additionally, in recent years the relationship between diet and human health has gained much attention among consumers, favoring the investigations on food nutraceutical properties. Among cereals, wheat plays an important role in human nutrition around the world and contributes to the daily intake of essential nutrients such as starch and protein. Moreover, whole grain contains several bioactive compounds that confer to wheat-derived products unique nutraceutical properties (dietary fibre, antioxidants). The present research provided interesting insights for the selection of wheat genotypes suitable for low-input systems and the development of specific breeding programs dedicated to organic farming. The investigation involved 5 old not dwarf genotypes (Andriolo, Frassineto, Gentil rosso, Inallettabile, Verna) and 1 modern dwarf variety (Palesio), grown under biodynamic management, over two consecutive growing seasons (2009/2010, 2010/2011). Results evidenced that under low-input farming some investigated old wheat genotypes (Frassineto, Inallettabile) were comparable to the modern cultivar in terms of whole agronomic performance. As regards the nutritional and nutraceutical properties, some old genotypes (Andriolo, Gentil rosso, Verna) emerged for their relevant content of several investigated phytochemicals (such as insoluble dietary fibre, polyphenols, flavonoids, in vitro antioxidant activity) and nutrients (protein, lipid, minerals). Despite of the low technological features, the six wheat varieties grown under low-input management may efficiently provide raw material for the preparation of traditionally processed bread with valuable sensory and nutritional properties. Results highlighted that old wheat varieties have peculiar phytochemical composition and may be a valuable source of nutraceutical compounds. Some of the genetic material involved in the present study may be used in breeding programs aimed at selecting varieties suitable for low-input farming and rich in health-promoting compounds.
Resumo:
This thesis reports on the experimental realization, characterization and application of a novel microresonator design. The so-called “bottle microresonator” sustains whispering-gallery modes in which light fields are confined near the surface of the micron-sized silica structure by continuous total internal reflection. While whispering-gallery mode resonators in general exhibit outstanding properties in terms of both temporal and spatial confinement of light fields, their monolithic design makes tuning of their resonance frequency difficult. This impedes their use, e.g., in cavity quantum electrodynamics (CQED) experiments, which investigate the interaction of single quantum mechanical emitters of predetermined resonance frequency with a cavity mode. In contrast, the highly prolate shape of the bottle microresonators gives rise to a customizable mode structure, enabling full tunability. The thesis is organized as follows: In chapter I, I give a brief overview of different types of optical microresonators. Important quantities, such as the quality factor Q and the mode volume V, which characterize the temporal and spatial confinement of the light field are introduced. In chapter II, a wave equation calculation of the modes of a bottle microresonator is presented. The intensity distribution of different bottle modes is derived and their mode volume is calculated. A brief description of light propagation in ultra-thin optical fibers, which are used to couple light into and out of bottle modes, is given as well. The chapter concludes with a presentation of the fabrication techniques of both structures. Chapter III presents experimental results on highly efficient, nearly lossless coupling of light into bottle modes as well as their spatial and spectral characterization. Ultra-high intrinsic quality factors exceeding 360 million as well as full tunability are demonstrated. In chapter IV, the bottle microresonator in add-drop configuration, i.e., with two ultra-thin fibers coupled to one bottle mode, is discussed. The highly efficient, nearly lossless coupling characteristics of each fiber combined with the resonator's high intrinsic quality factor, enable resonant power transfers between both fibers with efficiencies exceeding 90%. Moreover, the favorable ratio of absorption and the nonlinear refractive index of silica yields optical Kerr bistability at record low powers on the order of 50 µW. Combined with the add-drop configuration, this allows one to route optical signals between the outputs of both ultra-thin fibers, simply by varying the input power, thereby enabling applications in all-optical signal processing. Finally, in chapter V, I discuss the potential of the bottle microresonator for CQED experiments with single atoms. Its Q/V-ratio, which determines the ratio of the atom-cavity coupling rate to the dissipative rates of the subsystems, aligns with the values obtained for state-of-the-art CQED microresonators. In combination with its full tunability and the possibility of highly efficient light transfer to and from the bottle mode, this makes the bottle microresonator a unique tool for quantum optics applications.
Resumo:
A field of computational neuroscience develops mathematical models to describe neuronal systems. The aim is to better understand the nervous system. Historically, the integrate-and-fire model, developed by Lapique in 1907, was the first model describing a neuron. In 1952 Hodgkin and Huxley [8] described the so called Hodgkin-Huxley model in the article “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve”. The Hodgkin-Huxley model is one of the most successful and widely-used biological neuron models. Based on experimental data from the squid giant axon, Hodgkin and Huxley developed their mathematical model as a four-dimensional system of first-order ordinary differential equations. One of these equations characterizes the membrane potential as a process in time, whereas the other three equations depict the opening and closing state of sodium and potassium ion channels. The membrane potential is proportional to the sum of ionic current flowing across the membrane and an externally applied current. For various types of external input the membrane potential behaves differently. This thesis considers the following three types of input: (i) Rinzel and Miller [15] calculated an interval of amplitudes for a constant applied current, where the membrane potential is repetitively spiking; (ii) Aihara, Matsumoto and Ikegaya [1] said that dependent on the amplitude and the frequency of a periodic applied current the membrane potential responds periodically; (iii) Izhikevich [12] stated that brief pulses of positive and negative current with different amplitudes and frequencies can lead to a periodic response of the membrane potential. In chapter 1 the Hodgkin-Huxley model is introduced according to Izhikevich [12]. Besides the definition of the model, several biological and physiological notes are made, and further concepts are described by examples. Moreover, the numerical methods to solve the equations of the Hodgkin-Huxley model are presented which were used for the computer simulations in chapter 2 and chapter 3. In chapter 2 the statements for the three different inputs (i), (ii) and (iii) will be verified, and periodic behavior for the inputs (ii) and (iii) will be investigated. In chapter 3 the inputs are embedded in an Ornstein-Uhlenbeck process to see the influence of noise on the results of chapter 2.
Resumo:
Model-based calibration of steady-state engine operation is commonly performed with highly parameterized empirical models that are accurate but not very robust, particularly when predicting highly nonlinear responses such as diesel smoke emissions. To address this problem, and to boost the accuracy of more robust non-parametric methods to the same level, GT-Power was used to transform the empirical model input space into multiple input spaces that simplified the input-output relationship and improved the accuracy and robustness of smoke predictions made by three commonly used empirical modeling methods: Multivariate Regression, Neural Networks and the k-Nearest Neighbor method. The availability of multiple input spaces allowed the development of two committee techniques: a 'Simple Committee' technique that used averaged predictions from a set of 10 pre-selected input spaces chosen by the training data and the "Minimum Variance Committee" technique where the input spaces for each prediction were chosen on the basis of disagreement between the three modeling methods. This latter technique equalized the performance of the three modeling methods. The successively increasing improvements resulting from the use of a single best transformed input space (Best Combination Technique), Simple Committee Technique and Minimum Variance Committee Technique were verified with hypothesis testing. The transformed input spaces were also shown to improve outlier detection and to improve k-Nearest Neighbor performance when predicting dynamic emissions with steady-state training data. An unexpected finding was that the benefits of input space transformation were unaffected by changes in the hardware or the calibration of the underlying GT-Power model.
Resumo:
Comments on an article by Kashima et al. (see record 2007-10111-001). In their target article Kashima and colleagues try to show how a connectionist model conceptualization of the self is best suited to capture the self's temporal and socio-culturally contextualized nature. They propose a new model and to support this model, the authors conduct computer simulations of psychological phenomena whose importance for the self has long been clear, even if not formally modeled, such as imitation, and learning of sequence and narrative. As explicated when we advocated connectionist models as a metaphor for self in Mischel and Morf (2003), we fully endorse the utility of such a metaphor, as these models have some of the processing characteristics necessary for capturing key aspects and functions of a dynamic cognitive-affective self-system. As elaborated in that chapter, we see as their principal strength that connectionist models can take account of multiple simultaneous processes without invoking a single central control. All outputs reflect a distributed pattern of activation across a large number of simple processing units, the nature of which depends on (and changes with) the connection weights between the links and the satisfaction of mutual constraints across these links (Rummelhart & McClelland, 1986). This allows a simple account for why certain input features will at times predominate, while others take over on other occasions. (PsycINFO Database Record (c) 2008 APA, all rights reserved)
Resumo:
27-Channel EEG potential map series were recorded from 12 normals with closed and open eyes. Intracerebral dipole model source locations in the frequency domain were computed. Eye opening (visual input) caused centralization (convergence and elevation) of the source locations of the seven frequency bands, indicative of generalized activity; especially, there was clear anteriorization of α-2 (10.5–12 Hz) and β-2 (18.5–21 Hz) sources (α-2 also to the left). Complexity of the map series' trajectories in state space (assessed by Global Dimensional Complexity and Global OMEGA Complexity) increased significantly with eye opening, indicative of more independent, parallel, active processes. Contrary to PET and fMRI, these results suggest that brain activity is more distributed and independent during visual input than after eye closing (when it is more localized and more posterior).
Resumo:
Incident rainfall is a major source of nutrient input to a forest ecosystem and the consequent throughfall and stemflow contribute to nutrient cycling. These rain-based fluxes were measured over 12 mo in two forest types in Korup National Park, Cameroon, one with low (LEM) and one with high (HEM) ectomycorrhizal abundances of trees. Throughfall was 96.6 and 92.4% of the incident annual rainfall (5370 mm) in LEM and HEM forests respectively; stemflow was correspondingly 1.5 and 2.2%. Architectural analysis showed that ln(funneling ratio) declined linearly with increasing ln(basal area) of trees. Mean annual inputs of N, P, K, Mg and Ca in incident rainfall were 1.50, 1.07, 7.77, 5.25 and 9.27 kg ha(-1), and total rain-based inputs to the forest floor were 5.0, 3.2, 123.4, 14.4 and 37.7 kg ha-1 respectively. The value for K is high for tropical forests and that for N is low. Nitrogen showed a significantly lower loading of throughfall and stemflow in HEM than in LEM forest, this being associated in the HEM forest with a greater abundance of epiphytic bryophytes which may absorb more N. Incident rainfall provided c. 35% of the gross input of P to the forest floor (i. e., rain-based plus small litter inputs), a surprisingly high contribution given the sandy P-poor soils. At the start of the wet season leaching of K from the canopy was particularly high. Calcium in the rain was also highest at this time, most likely due to washing off of dry-deposited Harmattan dusts. It is proposed that throughfall has an important `priming' function in the rapid decomposition of litter and mineralization of P at the start of the wet season. The contribution of P inputted from the atmosphere appears to be significant when compared to the rates of P mineralization from leaf litter.