987 resultados para In vitro roots culture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enantioselective method using liquid-phase microextraction (LPME) followed by HPLC analysis was developed for the determination of oxybutynin (OXY) and its major metabolite N-desethyloxybutynin (DEO) in rat liver microsomal fraction. The LPME procedure was optimized using multifactorial experiments. Under the optimal extraction conditions, the mean recoveries were 61 and 55% for (R)-OXY and (S)-OXY, respectively. and 70 and 76% for (R)-DEO and (S)-DEO, respectively. The validated method was employed to an in vitro biotransformation study using rat liver microsomal fraction. The results demonstrated the enantioselective biotransformation of OXY. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enantioselective liquid chromatographic method using two-phase hollow fiber liquid-phase microextraction (HF-LPME-HPLC) was developed for the determination of isradipine (ISR) enantiomers and its main metabolite (pyridine derivative of isradipine, PDI) in microsomal fractions isolated from rat liver. The analytes were extracted from 1 mL of microsomal medium using a two-phase HF-LPME procedure with hexyl acetate as the acceptor phase, 30 min of extraction, and sample agitation at 1,500 rpm. For the first time, ISR enantiomers and PDI were resolved. For this separation, a ChiralpakA (R) AD column with hexane/2-propanol/ethanol (94:04:02, v/v/v) as the mobile phase at a flow rate of 1.5 mL min(-1) was used. The column was kept at 23 A +/- 2 A degrees C. The drug and metabolite detection was performed at 325 nm and the internal standard oxybutynin was detected at 225 nm. The recoveries were 23% for PDI and 19% for each ISR enantiomer. The method presented quantification limits (LOQ) of 50 ng mL(-1) and was linear over the concentration range of 50-5,000 and 50-2,500 ng mL(-1) for PDI and each ISR enantiomer, respectively. The validated method was employed to an in vitro biotransformation study of ISR using rat liver microsomal fraction showing that (+)-(S)-ISR is preferentially biotransformed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-phase LPME (liquid-phase microextraction) method for the enantioselective analysis of venlafaxine (VF) metabolites (O-desmethylvenlafaxine (ODV) and N-desmethylvenlafaxine (NDV) in microsomal preparations is described for the first time. The assay involves the chiral HPLC separation of drug and metabolites using a Chiralpak AD column under normal-phase mode of elution and detection at 230 nm. The LPME procedure was optimized using multifactorial experiments and the following optimal condition was established: sample agitation at 1,750 rpm, 20 min of extraction, acetic acid 0.1 mol/L as acceptor phase, 1-octanol as organic phase and donor phase pH adjustment to 10.0. Under these conditions, the mean recoveries were 41% and 42% for (-)-(R)-ODV and (+)-(S)-ODV, respectively, and 47% and 48% for (-)-( R)-NDV and (+)-( S)-NDV, respectively. The method presented quantification limits of 200 ng/mL and it was linear over the concentration range of 200-5,000 ng/mL for all analytes. The validated method was employed to study the in vitro biotransformation of VF using rat liver microsomal fraction. The results demonstrated the enantioselective biotransformation of VF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new nitrosyl ruthenium complex [Ru(NH center dot NHq)(terpy)NO](3+) nitric oxide donor was recently developed and due to its excellent vasodilator activity, it has been considered as a potential drug candidate. Drug metabolism is one of the main parameters that should be evaluated in the early drug development, so the biotransformation of this complex by rat hepatic microsomes was investigated. In order to perform the biotransformation study, a simple, sensitive and selective HPLC method was developed and carefully validated. The parameters evaluated in the validation procedure were: linearity, recovery, precision, accuracy, selectivity and stability. Except for the stability study, all the parameters evaluated presented values below the recommended by FDA guidelines. The stability study showed a time-dependent degradation profile. After method validation, the biotransformation study was accomplished and the kinetic parameters were determined. The biotransformation study obeyed the Michaelis-Menten kinetics. The V(max) and K(m) were, respectively, 0.1625 +/- 0.010 mu mol/mg protein/min and 79.97 +/- 11.52 mu M. These results indicate that the nitrosyl complex is metabolized by CYP450. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study evaluated the potential of a w/o microemulsion as a topical carrier system for delivery of the antioxidant quercetin. Topical and transdermal delivery of quercetin were evaluated in vitro Using porcine car skin mounted on a Franz diffusion cell and in vivo on hairless-skin mice. Skin irritation by topical application of the microemulsion containing quercetin, and the protective effect of the formulation on UVB-induced decrease of endogenous reduced glutathione levels and increase of cutaneous proteinase secretion/activity were also investigated. The w/o microemulsion increased the penetration of quercetin into the stratum corneum and epidermis plus dermis at 3, 6. 9 and 12 h post-application in vitro and in vivo at 6 h post-application. No transdermal delivery of quercetin Occurred. By evaluating established endpoints of skin irritation (erythema formation, epidermis thickening and infiltration of inflammatory cells), the Study demonstrated that the daily application of the w/o microemulsion for up to 2 days did not cause skin irritation. W/o microemulsion containing quercetin significantly prevented the UVB irradiation-induced GSH depletion and secretion/activity of metalloproteinases. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/purpose: Vitamins C and its derivatives, mainly due to their antioxidant properties, are being used in cosmetic products to protect and to reduce the signs of ageing. However, there are no studies comparing the effects of vitamin C [ascorbic acid (AA)] and its derivatives, magnesium ascorbyl phosphate (MAP) and ascorbyl tetra-isopalmitate (ATIP), when vehiculated in topical formulations, mainly using objective measurements, which are an important tool in clinical efficacy studies. Thus, the objective of this study was to determine the in vitro antioxidant activity of AA and its derivatives, MAP and ATIP, as well as their in vivo efficacy on human skin, when vehiculated in topical formulations. Methods: The study of antioxidant activity in vitro was performed with an aqueous and a lipid system. The in vivo methodology consisted of the application of these formulations on human volunteers` forearm skin and the analysis of the skin conditions after 4-week period daily applications in terms of transepidermal water loss (TEWL), stratum corneum moisture content and viscoelasticity using a Tewameter (R), Corneometer (R) and Cutometer (R), respectively. Results: In vitro experiments demonstrated that in an aqueous system, AA had the best antioxidant potential, and MAP was more effective than ATIP, whereas in the lipid system ATIP was more effective than MAP. In in vivo studies, all formulations enhanced stratum corneum moisture content after a 4-week period daily applications when compared with baseline values; however, only the formulation containing AA caused alterations in TEWL values. The formulations containing MAP caused alterations in the viscoelastic-to-elastic ratio, which suggested its action in the deeper layers of the skin. Conclusion: AA and its derivates presented an in vitro antioxidant activity but AA had the best antioxidant effect. In in vivo efficacy studies, only the formulation containing AA caused alterations in TEWL values and the formulation containing MAP caused alterations in the viscoelastic-to-elastic ratio. This way, vitamin C derivatives did not present the same effects of AA on human skin; however, MAP showed other significant effect-improving skin hydration, which is very important for the normal cutaneous metabolism and also to prevent skin alterations and early ageing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in vitro antileishmanial activity of Brazilian green propolis hydroalcoholic extract (BPE) were carried out on Leishmania (Viannia) braziliensis against both promastigote (doses ranging from 1 to 750 mu g mL(-1)) and amastigote (10, 100, and 250 mu g mL(-1)) assays in comparison with the positive (amphotericin B) and negative (dimethyl sulfoxide at 1% in physiologic solution) control groups. BPE displayed in vitro antileishmanial activities against promastigote forms of the parasite (p<0.05). However, it was inactive against its amastigote ones. In the in vitro cytotoxicity assay against Vero cells, BPE showed no cytotoxicity in the maximum doses tested. The high-performance liquid chromatography analysis allowed the identification of caffeic acid, p-coumaric acid, aromadendrine-4`-methyl-ether, 3-prenyl-p-coumaric acid (drupanin), and 3,5-diprenil-p-cumarico acid (artepillin C) as major compounds of BPE. In the in vivo assay, using a Balb/C lineage of Mus musculus male mice, groups of ten animals each were treated (1.5 mg kg day(-1)) with BPE orally (group 1), BPE topically (group 2), BPE orally and topically (group 3), and glucantime (group 4), using NaCl 0.9% (group 5) as the negative control group. Groups 1, 2, and 3 displayed a decrease on lesion development, after 90 days of treatment, by 78.6%, 84.3%, and 90.0%, respectively, while the glucantime-treated group showed 57.7% of decrease, all in comparison with the negative control group. It is the first time that the in vivo antileishmanial activity has been reported for Brazilian green propolis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study was developed a new nano drug delivery system (NDDS) based on association of biodegradable surfactants with biocompatible magnetic fluid of maguemita citrate derivative. This formulation consists in a magnetic emulsion with nanostructured colloidal particles. Preliminary in vitro experiments showed that the formulation presents a great potential for synergic application in the topical release of photosensitizer drug (PS) and excellent target tissue properties in the photodynamic therapy (PDT) combined with hyperthermia (HPT) protocols. The physical chemistry characterization and in vitro assays were carried out by Zn(II) Phtalocyanine (ZnPc) photosensitizer incorporated into NDDS in the absence and the presence of magnetic fluid, showed good results and high biocompatibility. In vitro experiments were accomplished by tape-stripping protocols for quanti. cation of drug association with different skin tissue layers. This technique is a classical method for analyses of drug release in stratum corneum and epidermis+ dermis skin layers. The NDDS formulations were applied directly in pig skin (tissue model) fixed in the cell`s Franz device with receptor medium container with a PBS/EtOH 20% solution (10mM, pH 7.4) at 37 degrees C. After 12 h of topical administration stratum corneum was removed from fifty tapes and the ZnPc retained was evaluated by solvent extraction in dimetil-sulphoxide under ultrasonic bath. These results indicated that magnetic nanoemulsion (MNE) increase the drug release on the deeper skin layers when compared with classical formulation in the absence of magnetic particles. This could be related with the increase of biocompatibility of NDDS due to the great affinity for the polar extracelullar matrix in the skin and also for the increase in the drug partition inside of corneocites wall. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we evaluated the photophysical and in vitro properties of Foscan (R), a second-generation photosensitizer drug (PS) widely used in systemic clinical protocols for cancer therapy based on Photodynamic Therapy (PDT). We employed biodegradable nanoemulsions (NE) as a colloidal vehicle of the oil/water (o/w) type focusing in topical administration of Foscan (R) and other photosensitizer drugs. This formulation was obtained and stabilized by the methodology described by Tabosa do Egito et al.,(30) based on the mixture of two phases: an aqueous solution and an organic medium consisting of nonionic surfactants and oil. The photodynamic potential of the drug incorporated into the NE was studied by steady-state and time-resolved spectroscopic techniques. We also analyzed the in vitro biological behavior carried out in mimetic biological environment protocols based on the animal model. After topical application in a skin animal model, we evaluated the Foscan (R)/NE diffusion flux into the skin layers (stratum corneum and epidermis + dermis) by classical procedures using Franz Diffusion cells. Our results showed that the photophysical properties of PS were maintained after its incorporation into the NE when compared with homogeneous organic medium. The in vitro assays enabled the determination of an adequate profile for the interaction of this system in the different skin layers, with an ideal time lag of 6 h after topical administration in the skin model. The Foscan (R) diffusion flux (J) was increased when this PS was incorporated into the NE, if compared with its flux in physiological medium. These parameters demonstrated that the NE can be potentially applied as a drug delivery system (DDS) for Foscan (R) in both in vitro and in vivo assays, as well as in future clinical applications involving topical skin cancer PDT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering that antioxidant flavonols have been reported to be beneficial to human health, but that their low water solubility and bioavailability limit their administration through systemic route, the development of suitable flavonol-carriers is of great importance for clinical therapeutics. The aim of this study was to prepare liposomes containing flavonols or not and evaluate their antioxidant activity. Vesicles were obtained by ethanol injection method and characterized in terms of entrapment efficiency, size and zeta potential. Inhibitory activity of liposomal flavonols on reactive oxygen species generation was assessed in vitro using luminol--H(2)O(2)--horseradish peroxidase technique. Antioxidant activity of liposomal flavonols is dependent on concentration and chemical structure of active compound. Quercetin and myricetin are the most active flavonols (IC(50) == 0.6--0.9 mu A mu mol/L), followed by kaempferol (IC(50) == 3.0--4.5 mu A mu mol/L) and galangin (IC(50) == 4.0--7.0 mu A mu mol/L). Our results suggest that antioxidant-loaded liposomes may be promising tools for therapy of diseases where oxidative stress is involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Essential Oil of Thymus vulgaris: Preparation of Pharmaceutical Mouthwash Formulation and In Vitro Evaluation of the Bacterial Plaque-Inhibiting Properties. The aim of this study was to evaluate the in vitro effect of the essential oil of Thymus vulgaris (thyme) pure or incorporate in a alcohol-free pharmaceutical mouthwash formulation, against Streptococcus mutans (ATCC 25175), being determined the Minimal Inhibitory Concentration (MIC) and the effect in the bacterial plate formation. The MIC value obtained for the essential oil was 100 mu g/mL (1 %). The mouthwash pharmaceutical formulation containing commercial essential oil of T. vulgaris was preparated. Microbiological and macroscopic analysis as well as analyses for MEV confirmed the effectiveness of this new alcohol-free mouthwash formulation containing essential oil of T. vulgaris as agent with plaque-inhibiting properties and possible application in the preventive dentistry. The chemical characterization of the bioactive essential oil was accomplished by CG-MS, being verified the presence of carvacrol, p-cimene and alpha-pinene as major constituents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Baccharis dracunculifolia is the most important vegetal source of propolis in southeast Brazil, and researchers have been investigating its biological properties. Propolis is a complex resinous hive product collected by bees from several plants, showing a very complex chemical composition. It has been employed since ancient times due to its therapeutic properties, such as antimicrobial, anti-inflammatory, antioxidant, immunomodulatory and antitumour activities, among others. The goal of this work was to compare the cytotoxic action of B. dracunculifolia, propolis and two isolated compounds (caffeic and cinnamic acids) on human laryngeal epidermoid carcinoma (HEp-2) cells in vitro. These cells were incubated with different concentrations of each variable, and cell viability was assessed by the crystal violet method. Lower concentrations of B. dracunculifolia (extract and essential oil), propolis, as well as caffeic and cinnamic acids, showed no cytotoxic activity against HEp-2 cells. On the other hand, elevated concentrations (50 and 100 mu g per 100 mu L) exerted a cytotoxic action, and propolis showed a more efficient action than its vegetal source and isolated compounds. Further investigation is still needed in order to explore the potential of these variables as antitumour agents and to understand their mechanisms of action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Baccharis dracunculifolia (Asteraceae), the most important plant source of the Brazilian green propolis (GPE), displayed in vitro activity against Leishmania donovani. with an IC(50) value of 45 mu g/mL. while GPE presented an IC(50) value of 49 mu g/mL Among the isolated compounds of B. dracunculifolia, ursolic acid, and hautriwaic acid lactone showed IC(50) values of 3.7 mu g/mL and 7.0 mu g/mL, respectively. Uvaol, acacetin, and ermanin displayed moderate antileishmanial activity. Regarding the antiplasmodial assay against Plasmodium falciparum, BdE and GPE gave similar IC(50) values (about 20 mu g/mL), while Hautriwaic acid lactone led to an IC(50) value of 0.8 mu g/mL (D6 clone). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intra-buccal polymeric bioadhesive systems that can stay adhered to the oral soft tissues for drug programmed release, with the preventive and/or therapeutic purpose has been employed for large clinical situations. A system based on hydroxypropyl methyl cellulose/Carbopol 934`/magnesium stearate (HPMC/Cp/StMg) was developed having the sodium fluoride as active principle. This kind of system was evaluated according to its resistance to the removal by means of physical test of tensile strength. Swine buccal mucosa extracted immediately after animals` sacrifice was employed as substrate for the physical trials, to obtain 16 test bodies. Artificial saliva with or without mucin was used to involve the substrate/bioadhesive system sets during the trials. Artificial salivas viscosity was determined by means of Brookfield viscometer, showing the artificial saliva with mucin 10.0 cP, and the artificial saliva without mucin 7.5 cP. The tensile strength assays showed the following averages: for the group ""artificial saliva with mucin"" - 12.89 Pa, and for the group ""without mucin"" - 12.35 Pa. Statistical analysis showed no significant difference between the assays for both artificial salivas, and it was possible to conclude that the variable mucin did not interfered with the bioadhesion process for the polymeric devices. The device was able to release fluoride in a safe, efficient and constant way up to 8 hours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chagas disease (American trypanosomiasis) is one of the most important parasitic diseases with serious social and economic impacts mainly on Latin America. This work reports the synthesis, in vitro trypanocidal evaluation, cytotoxicity assays, and molecular modeling and SAR/QSAR studies of a new series of N-phenylpyrazole benzylidene-carbohydrazides. The results pointed 6k (X = H, Y = p-NO(2), pIC(50) = 4.55 M) and 6l (X = F, Y = p-CN, pIC(50) = 4.27 M) as the most potent derivatives compared to crystal violet (pIC(50) = 3.77 M). The halogen-benzylidene-carbohydrazide presented the lowest potency whereas 6l showed the most promising pro. le with low toxicity (0% of cell death). The best equation from the 4D-QSAR analysis (Model 1) was able to explain 85% of the activity variability. The QSAR graphical representation revealed that bulky X-substituents decreased the potency whereas hydrophobic and hydrogen bond acceptor Y-substituents increased it. (C) 2008 Elsevier Ltd. All rights reserved.