954 resultados para IMMUNITY
Resumo:
The c-Jun-N-terminal kinase signaling pathway (JNK) is highly activated during ischemia and plays an important role in apoptosis and inflammation. We have previously demonstrated that D-JNKI1, a specific JNK inhibitor, is strongly neuroprotective in animal models of stroke. We presently evaluated if D-JNKI1 modulates post-ischemic inflammation such as the activation and accumulation of microglial cells. Outbred CD1 mice were subjected to 45 min middle cerebral artery occlusion (MCAo). D-JNKI1 (0.1 mg/kg) or vehicle (saline) was administered intravenously 3 h after MCAo onset. Lesion size at 48 h was significantly reduced, from 28.2+/-8.5 mm(3) (n=7) to 13.9+/-6.2 mm(3) in the treated group (n=6). Activation of the JNK pathway (phosphorylation of c-Jun) was observed in neurons as well as in Isolectin B4 positive microglia. We quantified activated microglia (CD11b) by measuring the average intensity of CD11b labelling (infra-red emission) within the ischemic tissue. No significant difference was found between groups. Cerebral ischemia was modelled in vitro by subjecting rat organotypic hippocampal slice cultures to oxygen (5%) and glucose deprivation for 30 min. In vitro, D-JNKI1 was found predominantly in NeuN positive neurons of the CA1 region and in few Isolectin B4 positive microglia. Furthermore, 48 h after OGD, microglia were activated whereas resting microglia were found in controls and in D-JNKI1-treated slices. Our study shows that D-JNKI1 reduces the infarct volume 48 h after transient MCAo and does not act on the activation and accumulation of microglia at this time point. In contrast, in vitro data show an indirect effect of D-JNKI1 on the modulation of microglial activation.
Resumo:
The study of natural T cell responses against pathogens or tumors, as well as the assessment of new immunotherapy strategies aimed at boosting these responses, requires increasingly precise ex vivo analysis of blood samples. For practical reasons, studies are often performed using purified PBMC samples, usually cryopreserved. Here, we report on FACS analyses of peripheral blood T cells, performed by direct antibody staining of non-purified total blood. For comparison, fresh PBMC, purified by Ficoll, were analysed. Our results show that the latter method can induce a bias in subpopulation distribution, in particular of CD8+ T cells, and sometimes lead to inaccurate measurement of antigen specific CD8+ T cell responses. Direct analysis of total blood can be applied to longitudinal immuno-monitoring of T cell-based therapy. While the need to purify and cryopreserve PBMC for subsequent studies is obvious, the use of whole blood has the advantage of providing unbiased results and only small amounts of blood are used.
Resumo:
The purpose of this study was to test melanoma vaccines consisting of peptides and immunological adjuvants for optimal immunogenicity and to evaluate laboratory immune monitoring for in vivo relevance. Forty-nine HLA-A2 positive patients with Melan-A positive melanoma were repeatedly vaccinated with Melan-A peptide, with or without immune adjuvant AS02B (QS21 and MPL) or IFA. Peptide-specific CD8 T cells in PBLs were analyzed ex vivo using fluorescent HLA-A2/Melan-A multimers and IFN-gamma ELISPOT assays. The vaccines were well tolerated. In vivo expansion of Melan-A-specific CD8 T cells was observed in 13 patients (1/12 after vaccination with peptide in AS02B and 12/17 after vaccination with peptide in IFA). The T cells produced IFN-gamma and downregulated CD45RA and CD28. T-cell responses correlated with inflammatory skin reactions at vaccine injection sites (P < 0.001) and with DTH reaction to Melan-A peptide (P < 0.01). Twenty-six of 32 evaluable patients showed progressive disease, whereas 4 patients had stable disease. The two patients with the strongest Melan-A-specific T-cell responses experienced regression of metastases in skin, lymph nodes, and lung. We conclude that repeated vaccination with Melan-A peptide in IFA frequently leads to sustained responses of specific CD8 T cells that are detectable ex vivo and correlate with inflammatory skin reactions.
Resumo:
Tumor-infiltrating plasmacytoid dendritic cells (pDCs) promote an immunosuppressive milieu that drives tumor growth in melanoma. This phenomenon typically results from the lack of appropriate pDC activation signals in the tumor microenvironment, but it is also actively controlled by tumor cells, which have evolved strategies to inhibit type I IFN production by pDCs. In this issue, Camisaschi et al. identify a new mechanism in which tumors avoid type I IFN production by triggering LAG-3-dependent activation of pDCs. Combination therapies that restore pDC functionality and trigger innate activation to produce type I IFN should be envisaged to induce effective antitumor immunity.
Resumo:
Biomphalaria glabrata, highly susceptible to Schistosoma mansoni, were seen to shed less and less cercariae along the time of infection. Histological examination kept a close correlation with this changing pattern of cercarial shedding, turning an initial picture of no-reaction (tolerance) gradually into one of hemocyte proliferation with formation of focal encapsulating lesions around disintegrating sporocysts and cercariae, a change that became disseminated toward the 142nd day post miracidial exposure. Findings were suggestive of a gradual installation of acquired immunity in snails infected with S. mansoni.
Resumo:
Seven rhesus macaques were infected intradermally with 10(7) promastigotes of Leishmania (Leishmania) major. All monkeys developed a localized, ulcerative, self-healing nodular skin lesion at the site of inoculation of the parasite. Non-specific chronic inflammation and/or tuberculoid-type granulomatous reaction were the main histopathological manifestations of the disease. Serum Leishmania-specific antibodies (IgG and IgG1) were detected by ELISA in all infected animals; immunoblot analyses indicated that numerous antigens were recognized. A very high degree of variability was observed in the parasite-specific cell-mediated immune responses [as detected by measuring delayed-type hypersensitivity (DTH) reaction, in vitro lymphocyte proliferation, and gamma interferon (IFN-gamma) production] for individuals over time post challenge. From all the recovered monkeys (which showed resolution of the lesions after 11 weeks of infection), 57.2% (4/7) and 28.6% (2/7) animals remained susceptible to secondary and tertiary infections, respectively, but the disease severity was altered (i.e. lesion size was smaller and healed faster than in the primary infection). The remaining monkeys exhibited complete resistance (i.e. no lesion) to each rechallenge. Despite the inability to consistently detect correlates of cell-mediated immunity to Leishmania or correlation between resistance to challenge and DTH, lymphocyte transformation or IFN-gamma production, partial or complete acquired resistance was conferred by experimental infection. This primate model should be useful for measuring vaccine effectiveness against the human disease.
Resumo:
In the past decades, prognosis of head and neck squamous cell carcinoma (HNSCC) has not improved despite substantial progress in treatment options. Since antitumoral immunity was described, immunotherapy has shown promising results as an adjunctive treatment in various cancer types. Tumor-associated antigens (TAAs) have been identified and shown to stimulate selective T-cell-mediated antitumoral immune response. This article briefly reviews the work done in the field of immunotherapy of HNSCC in the past few years. It gives confidence that immunotherapy may play an important role in the treatment of head and neck squamous cell carcinoma. Among various TAAs, the family of cancer testis antigens (CTAs) may be promising candidates for specific immune therapy in HNSCC. Ongoing studies will confirm whether CTAs may generate an immune response in clinical vaccine trials.
Resumo:
Notch proteins are cell surface receptors that mediate developmental cell specification events. To explore the function of murine Notch1, an essential portion of the gene was flanked with loxP sites and inactivation induced via interferon-regulated Cre recombinase. Mice with a neonatally induced loss of Notch1 function were transiently growth retarded and had a severe deficiency in thymocyte development. Competitive repopulation of lethally irradiated wild-type hosts with wild-type- and Notch1-deficient bone marrow revealed a cell autonomous blockage in T cell development at an early stage, before expression of T cell lineage markers. Notch1-deficient bone marrow did, however, contribute normally to all other hematopoietic lineages. These findings suggest that Notch1 plays an obligatory and selective role in T cell lineage induction.
Resumo:
Protozoa are among the most important pathogens that can cause infections in immunocompromised hosts. These microorganisms particularly infect individuals with impaired cellular immunity, such as those with hematological neoplasias, renal or heart transplant patients, patients using high doses of corticosteroids, and patients with acquired immunodeficiency syndrome. The protozoa that most frequently cause disease in immunocompromised patients are Toxoplasma gondii, Trypanosoma cruzi, different Leishmania species, and Cryptosporidium parvum; the first two species cause severe acute meningoencephalitis and acute myocarditis, Leishmania sp. causes mucocutaneous or visceral disease, and Cryptosporidium can lead to chronic diarrhea with hepatobiliary involvement. Various serological, parasitological, histological and molecular methods for the diagnosis of these infections are currently available and early institution of specific therapy for each of these organisms is a basic measure to reduce the morbidity and mortality associated with these infections.
Resumo:
An inflammasome is a multiprotein complex that serves as a platform for caspase-1 activation and caspase-1-dependent proteolytic maturation and secretion of interleukin-1β (IL-1β). Though a number of inflammasomes have been described, the NLRP3 inflammasome is the most extensively studied but also the most elusive. It is unique in that it responds to numerous physically and chemically diverse stimuli. The potent proinflammatory and pyrogenic activities of IL-1β necessitate that inflammasome activity is tightly controlled. To this end, a priming step is first required to induce the expression of both NLRP3 and proIL-1β. This event renders the cell competent for NLRP3 inflammasome activation and IL-1β secretion, and it is highly regulated by negative feedback loops. Despite the wide array of NLRP3 activators, the actual triggering of NLRP3 is controlled by integration a comparatively small number of signals that are common to nearly all activators. Minimally, these include potassium efflux, elevated levels of reactive oxygen species (ROS), and, for certain activators, lysosomal destabilization. Further investigation of how these and potentially other as yet uncharacterized signals are integrated by the NLRP3 inflammasome and the relevance of these biochemical events in vivo should provide new insight into the mechanisms of host defense and autoinflammatory conditions.
Resumo:
We have compared the efficacy of two Leishmania (Leishmania) major vaccines, one genetically attenuated (DHFR-TS deficient organisms), the other inactivated [autoclaved promastigotes (ALM) with bacillus Calmete-Guérin (BCG)], in protecting rhesus macaques (Macaca mulatta) against infection with virulent L. (L.) major. Positive antigen-specific recall proliferative response was observed in vaccinees (79% in attenuated parasite-vaccinated monkeys, versus 75% in ALM-plus-BCG-vaccinated animals), although none of these animals exhibited either augmented in vitro gamma interferon (IFN-g) production or positive delayed-type hypersensitivity (DTH) response to the leishmanin skin test prior to the challenge. Following challenge, there were significant differences in blastogenic responses (p < 0.05) between attenuated-vaccinated monkeys and naïve controls. In both vaccinated groups very low levels of antibody were found before challenge, which increased after infective challenge. Protective immunity did not follow vaccination, in that monkeys exhibited skin lesion at the site of challenge in all the groups. The most striking result was the lack of pathogenicity of the attenuated parasite, which persisted in infected animals for up to three months, but were incapable of causing disease under the conditions employed. We concluded that both vaccine protocols used in this study are safe in primates, but require further improvement for vaccine application.
Resumo:
The success of a vaccine consists in the induction of an innate immune response and subsequent activation of the adaptive immune system. Because antigens are usually not immunogenic, the addition of adjuvants that activate innate immunity is required. The mycobacterial cord factor trehalose-6,6'-dimycolate (TDM) and its synthetic adjuvant analogue trehalose-6,6'-dibehenate (TDB) rely on the C-type lectin Mincle and the signaling molecules Syk and Card9 to trigger innate immunity. In this study, we show that stimulation of bone marrow-derived dendritic cells (BMDCs) with TDB induces Nlrp3 inflammasome-dependent IL-1β secretion. While Card9 is required for NF-κB activation by TDB, it is dispensable for TDB-induced activation of the Nlrp3 inflammasome. Additionally, efflux of intracellular potassium, lysosomal rupture, and oxygen radical (ROS) production are crucial for caspase-1 processing and IL-1β secretion by TDB. In an in vivo inflammation model, we demonstrate that the recruitment of neutrophils by TDB is significantly reduced in the Nlrp3-deficient mice compared to the wild-type mice, while the production of chemokines in vitro is not influenced by the absence of Nlrp3. These results identify the Nlrp3 inflammasome as an essential mediator for the induction of an innate immune response triggered by TDB.
Resumo:
The costs of coping with stressful situations are traded-off against other functions such as immune responses. This trade-off may explain why corticosterone secretion reduces immune reactions. Corticosterone differentially affects various immunity components. However, which component is suppressed varies between studies. It remains unclear whether the trade-off in energy, nutrition, autoimmunity or oxidative stress accounts for differential immunosuppression. In this study, we investigated whether corticosterone differentially affects the constitutive innate and humoral acquired immunity. We used barn owl nestlings, implanting 50% with a corticosterone-releasing pellet and the other 50% with a placebo pellet. To measure the effect on humoral immunity we vaccinated 50% of the corticosterone-nestlings and 50% of the placebo-nestlings with the antigens 'Tetravac' and the other 50% were injected with PBS. To assess the costs of elevated corticosterone, we measured body mass and resistance to oxidative stress. Administration of corticosterone increased corticosterone levels whereas vaccination induced the production of antibodies. Corticosterone reduced the production of antibodies, but it did not significantly affect the constitutive innate immunity. Corticosterone reduced body growth and resistance to oxidative stress. Under stressful conditions barn owl nestlings seem to keep the constitutive innate immunity, whereas elevated corticosterone levels negatively affected inducible immune responses. We found evidence that mounting a humoral immune reaction is not costly in terms of growth, but reduces the resistance to oxidative stress independently of corticosterone administration. We suggest that humoral immunity is suppressed because the risk of immunopathologies may be disproportionately high when mounting an antibody response under stressful situations.