953 resultados para Hypoxia-reoxigenation
Resumo:
OBJECTIVE: To relate volumetric magnetic resonance imaging (MRI) findings to hypothermia therapy and neurosensory impairments. STUDY DESIGN: Newborns > or =36 weeks' gestation with hypoxic-ischemic encephalopathy who participated in the National Institute of Child Health and Human Development hypothermia randomized trial at our center were eligible. We determined the relationship between hypothermia treatment and usual care (control) to absolute and relative cerebral tissue volumes. Furthermore, we correlated brain volumes with death or neurosensory impairments at 18 to 22 months. RESULT: Both treatment groups were comparable before randomization. Total brain tissue volumes did not differ in relation to treatment assignment. However, relative volumes of subcortical white matter were significantly larger in hypothermia-treated than control infants. Furthermore, relative total brain volumes correlated significantly with death or neurosensory impairments. Relative volumes of the cortical gray and subcortical white matter also correlated significantly with Bayley Scales psychomotor development index. CONCLUSION: Selected volumetric MRI findings correlated with hypothermia therapy and neurosensory impairments. Larger studies using MRI brain volumes as a secondary outcome measure are needed.
Resumo:
The molecular mechanisms that mediate endometrial cancer invasion and metastasis remain poorly understood. This is a significant clinical problem, as there is no definitive cure for metastatic disease. The purinergic pathway’s generation of adenosine and its activation of the adenosine receptor A2B (A2BR) induces cell-cell adhesion to promote barrier function. This barrier function is known to be important in maintaining homeostasis during hypoxia, trauma, and sepsis. Loss of this epithelial barrier function provides a considerable advantage for carcinoma progression, as loss of cell-cell adhesions supports proliferation, aberrant signaling, epithelial-to-mesenchymal transition, invasion, and metastasis. The present work provides strong evidence that CD73-generated adenosine actively promotes cell-cell adhesion in carcinoma cells by filopodia-induced zippering. Adenosine-generating ecto-enzyme, CD73, was down-regulated in moderately- and poorly-differentiated, invasive, and metastatic endometrial carcinomas. CD73 expression and enzyme activity in normal endometrium and endometrial carcinomas was significantly correlated to the epithelial phenotype. Barrier function in normal epithelial cells of the endometrium was dependent on stress-induced generation of adenosine by CD73 and adenosine’s activation of A2BR. This same mechanism inhibited endometrial carcinoma cell migration and invasion. Finally, adenosine’s activation of A2BR induced the formation of filopodia that promoted the re-forming of cell-cell adhesions in carcinoma cells. Overall, these studies identified purinergic pathway-induced filopodia to be a novel mechanism of adenosine’s barrier function and a mechanism that has to be avoided/down-regulated by endometrial carcinoma cells attempting to lose attachment with their neighboring cells. These results provide insight into the molecular mechanisms of endometrial cancer invasion. In addition, because loss of cell-cell adhesions has been closely linked to therapy resistance in cancer, these results provide a rational clinical strategy for the re-establishment of cell-cell adhesions to potentially increase therapeutic sensitivity. In contrast to other molecular mechanisms regulating cell-cell adhesions, the purinergic pathway is clinically druggable, with agonists and antagonists currently being tested in clinical trials of various diseases.
Resumo:
This study was conducted to determine the incidence and etiology of neonatal seizures, and evaluate risk factors for this condition in Harris County, Texas, between 1992 and 1994. Potential cases were ascertained from four sources: discharge diagnoses at local hospitals, birth certificates, death certificates, and a clinical study of neonatal seizures conducted concurrent with this study at a large tertiary care center in Houston, Texas. The neonatal period was defined as the first 28 days of life for term infants, and up to 44 weeks gestation for preterm infants.^ There were 207 cases of neonatal seizures ascertained among 116,048 live births, yielding and incidence of 1.8 per 1000. Half of the seizures occurred by the third day of life, 70% within the first week, and 93% within the first 28 days of life. Among 48 preterm infants with seizures 15 had their initial seizure after the 28th day of life. About 25% of all seizures occurred after discharge from the hospital of birth.^ Idiopathic seizures occurred most frequently (0.5/1000 births), followed by seizures attributed to perinatal hypoxia/ischemia (0.4/1000 births), intracranial hemorrhage (0.2/1000 births), infection of the central nervous system (0.2/1000 births), and metabolic abnormalities (0.1/1000 births).^ Risk factors were evaluated based on birth certificate information, using univariate and multivariate analysis (logistic regression). Factors considered included birth weight, gender, ethnicity, place of birth, mother's age, method of delivery, parity, multiple birth and, among term infants, small birth weight for gestational age (SGA). Among preterm infants, very low birth weight (VLBW, $<$1500 grams) was the strongest risk factor, followed by birth in private/university hospitals with a Level III nursery compared with hospitals with a Level II nursery (RR = 2.9), and male sex (RR = 1.8). The effect of very low birth weight varied according to ethnicity. Compared to preterm infants weighing 2000-2999 grams, non-white VLBW infants were 12.0 times as likely to have seizures; whereas white VLBW infants were 2.5 times as likely. Among term infants, significant risk factors included SGA (RR = 1.8), birth in Level III nursery private/university hospitals versus hospitals with Level II nursery (RR = 2.0), and birth by cesarean section (RR = 2.2). ^
Resumo:
Modulation of tumor hypoxia to increase bioreductive drug antitumor activity was investigated. The antivascular agent 5,6-dimethylxanthenone acetic acid (DMXAA) was used in combination studies with the bioreductive drugs Tirapazamine (TPZ) and Mitomycin C (MMC). Blood perfusion studies with DMXAA showed a maximal reduction of 66% in tumor blood flow 4 hours post drug administration. This tumor specific decrease in perfusion was also found to be dose-dependent, with 25 and 30 mg/kg DMXAA yielding greater than 50% reduction in tumor blood flow. Increases in antitumor activity with combination therapy (bioreductive drugs $+$ DMXAA) were significant over individual therapies, suggesting an increased activity due to increased hypoxia induced by DMXAA. Combination studies yielded the following significant tumor growth delays over control: MMC (5mg/kg) $+$ DMXAA (25mg/kg) = 20 days, MMC (2.5mg/kg) $+$ DMXAA (25 mg/kg) = 8 days, TPZ (21.4mg/kg) $+$ DMXAA (17.5mg/kg) = 4 days. The mechanism of interaction of these drugs was investigated by measuring metabolite production and DNA damage. 'Real time' microdialysis studies indicated maximal metabolite production at 20-30 minutes post injection for individual and combination therapies. DNA double strand breaks induced by TPZ $\pm$ DMXAA (20 minutes post injection) were analyzed by pulsed field gel electrophoresis (PFGE). Southern blot analyses and quantification showed TPZ induced DNA double strand breaks, but this effect was not evident in combination studies with DMXAA. Based on these data, combination studies of TPZ $+$ DMXAA showed increased antitumor activity over individual drug therapies. The mechanism of this increased activity, however, does not appear to be due to an increase in TPZ bioreduction at this time point. ^
Resumo:
Because neuronal nitric oxide synthase (nNOS) has a well-known impact on arteriolar blood flow in skeletal muscle, we compared the ultrastructure and the hemodynamics of/in the ensuing capillaries in the extensor digitorum longus (EDL) muscle of male nNOS-knockout (KO) mice and wild-type (WT) littermates. The capillary-to-fiber (C/F) ratio (-9.1%) was lower (P ≤ 0.05) in the nNOS-KO mice than in the WT mice, whereas the mean cross-sectional fiber area (-7.8%) and the capillary density (-3.1%) varied only nonsignificantly (P > 0.05). Morphometrical estimation of the area occupied by the capillaries as well as the volume and surface densities of the subcellular compartments differed nonsignificantly (P > 0.05) between the two strains. Intravital microscopy revealed neither the capillary diameter (+3% in nNOS-KO mice vs. WT mice) nor the mean velocity of red blood cells in EDL muscle (+25% in nNOS-KO mice vs. WT mice) to significantly vary (P > 0.05) between the two strains. The calculated shear stress in the capillaries was likewise nonsignificantly different (3.8 ± 2.2 dyn/cm² in nNOS-KO mice and 2.1 ± 2.2 dyn/cm² in WT mice; P > 0.05). The mRNA levels of vascular endothelial growth factor (VEGF)-A were lower in the EDL muscle of nNOS-KO mice than in the WT littermates (-37%; P ≤ 0.05), whereas mRNA levels of VEGF receptor-2 (VEGFR-2) (-11%), hypoxia inducible factor-1α (+9%), fibroblast growth factor-2 (-14%), and thrombospondin-1 (-10%) differed nonsignificantly (P > 0.05). Our findings support the contention that VEGF-A mRNA expression and C/F-ratio but not the ultrastructure or the hemodynamics of/in capillaries in skeletal muscle at basal conditions depend on the expression of nNOS.
Resumo:
Perinatal brain damage is associated not only with hypoxic-ischemic insults but also with intrauterine inflammation. A combination of antenatal inflammation and asphyxia increases the risk of cerebral palsy >70 times. The aim of the present study was to determine the effect of intracisternal (i.c.) administration of endotoxin [lipopolysaccharides (LPS)] on subsequent hypoxic-ischemic brain damage in neonatal rats. Seven-day-old Wistar rats were subjected to i.c. application of NaCl or LPS (5 microg/pup). One hour later, the left common carotid artery was exposed through a midline neck incision and ligated with 6-0 surgical silk. After another hour of recovery, the pups were subjected to a hypoxic gas mixture (8% oxygen/92% nitrogen) for 60 min. The animals were randomized to four experimental groups: 1) sham control group, left common carotid artery exposed but not ligated (n = 5); 2) LPS group, subjected to i.c. application of LPS (n = 7); 3) hypoxic-ischemic study group, i.c. injection of NaCl and exposure to hypoxia after ligation of the left carotid artery (n = 17); or 4) hypoxic-ischemic/LPS study group, i.c. injection of LPS and exposure to hypoxia after ligation of the left carotid artery (n = 19). Seven days later, neonatal brains were assessed for neuronal cell damage. In a second set of experiments, rat pups received an i.c. injection of LPS (5 microg/pup) and were evaluated for tumor necrosis factor-alpha expression by immunohistochemistry. Neuronal cell damage could not be observed in the sham control or in the LPS group. In the hypoxic-ischemic/LPS group, neuronal injury in the cerebral cortex was significantly higher than in animals that were subjected to hypoxia/ischemia after i.c. application of NaCl. Injecting LPS intracisternally caused a marked expression of tumor necrosis factor-alpha in the leptomeninges. Applying LPS intracisternally sensitizes the immature rat brain to a subsequent hypoxic-ischemic insult.
Resumo:
Impairment of cognitive performance during and after high-altitude climbing has been described in numerous studies and has mostly been attributed to cerebral hypoxia and resulting functional and structural cerebral alterations. To investigate the hypothesis that high-altitude climbing leads to cognitive impairment, we used of neuropsychological tests and measurements of eye movement (EM) performance during different stimulus conditions. The study was conducted in 32 mountaineers participating in an expedition to Muztagh Ata (7,546 m). Neuropsychological tests comprised figural fluency, line bisection, letter and number cancellation, and a modified pegboard task. Saccadic performance was evaluated under three stimulus conditions with varying degrees of cortical involvement: visually guided pro- and anti-saccades, and visuo-visual interaction. Typical saccade parameters (latency, mean sequence, post-saccadic stability, and error rate) were computed off-line. Measurements were taken at a baseline level of 440 m and at altitudes of 4,497, 5,533, 6,265, and again at 440 m. All subjects reached 5,533 m, and 28 reached 6,265 m. The neuropsychological test results did not reveal any cognitive impairment. Complete eye movement recordings for all stimulus conditions were obtained in 24 subjects at baseline and at least two altitudes and in 10 subjects at baseline and all altitudes. Measurements of saccade performances showed no dependence on any altitude-related parameter and were well within normal limits. Our data indicates that acclimatized climbers do not seem to suffer from significant cognitive deficits during or after climbs to altitudes above 7,500 m. We demonstrated that investigation of EMs is feasible during high-altitude expeditions.
Resumo:
The lack of a permissive cell culture system hampers the study of human parvovirus B19 (B19V). UT7/Epo is one of the few established cell lines that can be infected with B19V but generates none or few infectious progeny. Recently, hypoxic conditions or the use of primary CD36+ erythroid progenitor cells (CD36+ EPCs) have been shown to improve the infection. These novel approaches were evaluated in infection and transfection experiments. Hypoxic conditions or the use of CD36+ EPCs resulted in a significant acceleration of the infection/transfection and a modest increase in the yield of capsid progeny. However, under all tested conditions, genome encapsidation was impaired seriously. Further analysis of the cell culture virus progeny revealed that differently to the wild-type virus, the VP1 unique region (VP1u) was exposed partially and was unable to become further externalized upon heat treatment. The fivefold axes pore, which is used for VP1u externalization and genome encapsidation, might be constricted by the atypical VP1u conformation explaining the packaging failure. Although CD36+ EPCs and hypoxia facilitate B19V infection, large quantities of infectious progeny cannot be generated due to a failure in genome encapsidation, which arises as a major limiting factor for the in vitro propagation of B19V.
Resumo:
Prevention and treatment of intraoperative hypoxemia in horses is difficult and both efficacy and safety of therapeutic maneuvers have to be taken into account. Inhaled salbutamol has been suggested as treatment of hypoxia in horses during general anesthesia, due to safety and ease of the technique. The present report describes the occurrence of clinically relevant unwanted cardiovascular effects (i.e. tachycardia and blood pressure modifications) in 5 horses undergoing general anesthesia in dorsal recumbency after salbutamol inhalation. Balanced anesthesia based on inhalation of isoflurane in oxygen or oxygen and air and continuous rate infusion (CRI) of lidocaine, romifidine, or combination of lidocaine and guaifenesine and ketamine was provided. Supportive measures were necessary to restore normal cardiovascular function in all horses but no long-term adverse effects were noticed in any of the cases.
Resumo:
BACKGROUND Clinical prognostic groupings for localised prostate cancers are imprecise, with 30-50% of patients recurring after image-guided radiotherapy or radical prostatectomy. We aimed to test combined genomic and microenvironmental indices in prostate cancer to improve risk stratification and complement clinical prognostic factors. METHODS We used DNA-based indices alone or in combination with intra-prostatic hypoxia measurements to develop four prognostic indices in 126 low-risk to intermediate-risk patients (Toronto cohort) who will receive image-guided radiotherapy. We validated these indices in two independent cohorts of 154 (Memorial Sloan Kettering Cancer Center cohort [MSKCC] cohort) and 117 (Cambridge cohort) radical prostatectomy specimens from low-risk to high-risk patients. We applied unsupervised and supervised machine learning techniques to the copy-number profiles of 126 pre-image-guided radiotherapy diagnostic biopsies to develop prognostic signatures. Our primary endpoint was the development of a set of prognostic measures capable of stratifying patients for risk of biochemical relapse 5 years after primary treatment. FINDINGS Biochemical relapse was associated with indices of tumour hypoxia, genomic instability, and genomic subtypes based on multivariate analyses. We identified four genomic subtypes for prostate cancer, which had different 5-year biochemical relapse-free survival. Genomic instability is prognostic for relapse in both image-guided radiotherapy (multivariate analysis hazard ratio [HR] 4·5 [95% CI 2·1-9·8]; p=0·00013; area under the receiver operator curve [AUC] 0·70 [95% CI 0·65-0·76]) and radical prostatectomy (4·0 [1·6-9·7]; p=0·0024; AUC 0·57 [0·52-0·61]) patients with prostate cancer, and its effect is magnified by intratumoral hypoxia (3·8 [1·2-12]; p=0·019; AUC 0·67 [0·61-0·73]). A novel 100-loci DNA signature accurately classified treatment outcome in the MSKCC low-risk to intermediate-risk cohort (multivariate analysis HR 6·1 [95% CI 2·0-19]; p=0·0015; AUC 0·74 [95% CI 0·65-0·83]). In the independent MSKCC and Cambridge cohorts, this signature identified low-risk to high-risk patients who were most likely to fail treatment within 18 months (combined cohorts multivariate analysis HR 2·9 [95% CI 1·4-6·0]; p=0·0039; AUC 0·68 [95% CI 0·63-0·73]), and was better at predicting biochemical relapse than 23 previously published RNA signatures. INTERPRETATION This is the first study of cancer outcome to integrate DNA-based and microenvironment-based failure indices to predict patient outcome. Patients exhibiting these aggressive features after biopsy should be entered into treatment intensification trials. FUNDING Movember Foundation, Prostate Cancer Canada, Ontario Institute for Cancer Research, Canadian Institute for Health Research, NIHR Cambridge Biomedical Research Centre, The University of Cambridge, Cancer Research UK, Cambridge Cancer Charity, Prostate Cancer UK, Hutchison Whampoa Limited, Terry Fox Research Institute, Princess Margaret Cancer Centre Foundation, PMH-Radiation Medicine Program Academic Enrichment Fund, Motorcycle Ride for Dad (Durham), Canadian Cancer Society.
Resumo:
Preeclampsia is a human pregnancy-specific disorder characterized by a placental pro-inflammatory response in combination with an imbalance of angiogenic factors and clinical symptoms, including hypertension and proteinuria. Insufficient uteroplacental oxygenation in preeclampsia due to impaired trophoblast invasion during placentation is believed to be responsible for many of the molecular events leading to the clinical manifestations of this disease. We investigated the use of hypoxic treatment of the dual placental perfusion system as a model for preeclampsia. A modified perfusion technique allowed us to achieve a mean soluble oxygen tension within the intervillous space (IVS) of 5-7% for normoxia and <3% for hypoxia (as a model for preeclampsia). We assayed for the levels of different inflammatory cytokines, oxidative stress markers, as well as other factors, such as endothelin (ET)-1 that are known to be implicated as part of the inflammatory response in preeclampsia. Our results show a significant increase under hypoxia in the levels of different inflammatory cytokines, including IL-6 (P=0.002), IL-8 (P<0.0001), TNF-α (P=0.032) and IFN-γ (P=0.009) at 360 min in maternal venous samples (n=6). There was also a significant increase in ET-1 levels under hypoxia both on the maternal side at 30 min (P=0.003) and fetal side at 360 min (P=0.036) (n=6). Other markers of oxidative stress, including malondialdehyde and 8-iso-protaglandin F2α (P=0.009) also show increased levels. Overall, these findings indicate that exposure of ex vivo dually perfused placental tissue to hypoxia provides a useful model for mimicking the inflammatory response characteristic of preeclampsia. This would therefore provide a powerful tool for studying and further delineating the molecular mechanisms involved in the underlying pathophysiology of preeclampsia.
Resumo:
BACKGROUND Cell-free foetal haemoglobin (HbF) has been shown to play a role in the pathology of preeclampsia (PE). In the present study, we aimed to further characterize the harmful effects of extracellular free haemoglobin (Hb) on the placenta. In particular, we investigated whether cell-free Hb affects the release of placental syncytiotrophoblast vesicles (STBMs) and their micro-RNA content. METHODS The dual ex-vivo perfusion system was used to perfuse isolated cotyledons from human placenta, with medium alone (control) or supplemented with cell-free Hb. Perfusion medium from the maternal side of the placenta was collected at the end of all perfusion phases. The STBMs were isolated using ultra-centrifugation, at 10,000×g and 150,000×g (referred to as 10K and 150K STBMs). The STBMs were characterized using the nanoparticle tracking analysis, identification of surface markers and transmission electron microscopy. RNA was extracted and nine different micro-RNAs, related to hypoxia, PE and Hb synthesis, were selected for analysis by quantitative PCR. RESULTS All micro-RNAs investigated were present in the STBMs. Mir-517a, mir-141 and mir-517b were down regulated after Hb perfusion in the 10K STBMs. Furthermore, Hb was shown to be carried by the STBMs. CONCLUSION This study showed that Hb perfusion can alter the micro-RNA content of released STBMs. Of particular interest is the alteration of two placenta specific micro-RNAs; mir-517a and mir-517b. We have also seen that STBMs may function as carriers of Hb into the maternal circulation.
Resumo:
Experimentally renal tissue hypoxia appears to play an important role in the pathogenesis of chronic kidney disease (CKD) and arterial hypertension (AHT). In this study we measured renal tissue oxygenation and its determinants in humans using blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) under standardized hydration conditions. Four coronal slices were selected, and a multi gradient echo sequence was used to acquire T2* weighted images. The mean cortical and medullary R2* values ( = 1/T2*) were calculated before and after administration of IV furosemide, a low R2* indicating a high tissue oxygenation. We studied 195 subjects (95 CKD, 58 treated AHT, and 42 healthy controls). Mean cortical R2 and medullary R2* were not significantly different between the groups at baseline. In stimulated conditions (furosemide injection), the decrease in R2* was significantly blunted in patients with CKD and AHT. In multivariate linear regression analyses, neither cortical nor medullary R2* were associated with eGFR or blood pressure, but cortical R2* correlated positively with male gender, blood glucose and uric acid levels. In conclusion, our data show that kidney oxygenation is tightly regulated in CKD and hypertensive patients at rest. However, the metabolic response to acute changes in sodium transport is altered in CKD and in AHT, despite preserved renal function in the latter group. This suggests the presence of early renal metabolic alterations in hypertension. The correlations between cortical R2* values, male gender, glycemia and uric acid levels suggest that these factors interfere with the regulation of renal tissue oxygenation.
Resumo:
Prostaglandins such as prostaglandin E2 (PGE2) play a pivotal role in physiological and pathophysiological pathways in gastric mucosa. Little is known about the interrelation of the prostaglandin E (EP) receptors with the prostaglandin transporter OATP2A1 in the gastric mucosa and gastric carcinoma. Therefore, we first investigated the expression of OATP2A1 and EP4 in normal and carcinoma gastric mucosa. Different PGE2-mediated cellular pathways and mechanisms were investigated using human embryonic kidney cells (HEK293) and the human gastric carcinoma cell line AGS stably transfected with OATP2A1. Colocalization and expression of OATP2A1 and EP4 were detected in mucosa of normal gastric tissue and of gastric carcinomas. OATP2A1 reduced the PGE2-mediated cAMP production in HEK293 and AGS cells overexpressing EP4 and OATP2A1. The expression of OATP2A1 in AGS cells resulted in a reduction of [(3)H]-thymidine incorporation which was in line with a higher accumulation of AGS-OATP2A1 cells in S-phase of the cell cycle compared to control cells. In contrast, the expression of OATP2A1 in HEK293 cells had no influence on the distribution in the S-phase compared to control cells. OATP2A1 also diminished the PGE2-mediated expression of interleukin-8 mRNA (IL-8) and hypoxia-inducible-factor 1α (HIF1α) protein in AGS-OATP2A1 cells. The expression of OATP2A1 increased the sensitivity of AGS cells against irinotecan which led to reduced cell viability. Taken together, these data show that OATP2A1 influences PGE2-mediated cellular pathways. Therefore, OATP2A1 needs to be considered as a key determinant for the understanding of the physiology and pathophysiology of prostaglandins in healthy and tumorous gastric mucosa.
Resumo:
The diagnostics of pancreatic neuroendocrine tumors (PanNEN) have changed in recent years especially concerning the World Health Organization (WHO) classification, TNM staging and grading. Furthermore, some new prognostic and predictive immunohistochemical markers have been introduced. Most progress, however, has been made in the molecular pathogenesis of these neoplasms. Using next generation sequencing techniques, the mammalian target of rapamycin (mTOR) pathway, hypoxia and epigenetic changes were identified as key players in tumorigenesis. In this article the most important developments of morphological as well as immunohistochemical diagnostics together with the molecular background of PanNEN are summarized.