919 resultados para Hydrogen evolution rate
Resumo:
Recent developments in wearable ECG technology have seen renewed interest in the use of Heart Rate Variability (HRV) feedback for stress management. Yet, little is know about the efficacy of such interventions. Positive reappraisal is an emotion regulation strategy that involves changing the way a situation is construed to decrease emotional impact. We sought to test the effectiveness of an intervention that used feedback on HRV data to prompt positive reappraisal during a stressful work task. Participants (N=122) completed two 20-minute trials of an inbox activity. In-between the first and the second trial participants were assigned to the waitlist control condition, a positive reappraisal via psycho-education condition, or a positive reappraisal via HRV feedback condition. Results revealed that using HRV data to frame a positive reappraisal message is more effective than using psycho-education (or no intervention)–especially for increasing positive mood and reducing arousal.
Resumo:
This chapter introduces the reader to the relational approach to information literacy, its evolution and use in contemporary research and emerging directions. It presents the relational approach, first introduced by Australian information literacy researchers, as an integration of experiential, contextual and transformational perspectives. The chapter opens with a reflection on the wider information literacy domain. It then addresses the development of the approach, its fundamental elements and characteristics, and explores the adoption of the approach in key contexts including education, workplace and community settings. The chapter explores significant studies that have contributed to its evolution and reflects on the impact of the development of the relational framework and related research. The chapter concludes with a focus on directions emerging from the relational understanding ofinformation literacy and potential implications.
Resumo:
This paper investigates how Enterprise Architecture (EA) evolves due to emerging trends. It specifically explores how EA integrates the Service-oriented Architecture (SOA). Archer’s Morphogenetic theory is used as an analytical approach to distinguish the architectural conditions under which SOA is introduced, to study the relationships between these conditions and SOA introduction, and to reflect on EA evolution (elaborations) that then take place. The paper focuses on reasons for why EA evolution could take place, or not and what architectural changes could happen due to SOA integration. The research builds on sound theoretical foundations to discuss EA evolution in a field that often lacks a solid theoretical groundwork. Specifically, it proposes that critical realism, using the morphogenetic theory, can provide a useful theoretical foundation to study enterprise architecture (EA) evolution. The initial results of a literature review (a-priori model) were extended using explorative interviews. The findings of this study are threefold. First, there are five different levels of EA-SOA integration outcomes. Second, a mature EA, flexible and well-defined EA framework and comprehensive objectives of EA improve the integration outcomes. Third, the analytical separation using Archer’s theory is helpful in order to understand how these different integration outcomes are generated.
Resumo:
We aimed to evaluate the effect of the appointment of a dedicated specialist thoracic surgeon on surgical practice for lung cancer previously served by cardio-thoracic surgeons. Outcomes were compared for the 240 patients undergoing surgical resection for lung cancer in two distinct 3-year periods: Group A: 65 patients, 1994-1996 (pre-specialist); Group B: 175 patients, 1997-1999 (post-specialist). The changes implemented resulted in a significant increase in resection rate (from 12.2 to 23.4%, P<0.001), operations in the elderly (over 75 years) and extended resections. There were no significant differences in stage distribution, in-hospital mortality or stage-specific survival after surgery. Lung cancer surgery provided by specialists within a multidisciplinary team resulted in increased surgical resection rates without compromising outcome. Our results strengthen the case for disease-specific specialists in the treatment of lung cancer. © 2004 Published by Elsevier Ireland Ltd.
Resumo:
Viroids and most viral satellites have small, noncoding, and highly structured RNA genomes. How they cause disease symptoms without encoding proteins and why they have characteristic secondary structures are two longstanding questions. Recent studies have shown that both viroids and satellites are capable of inducing RNA silencing, suggesting a possible role of this mechanism in the pathology and evolution of these subviral RNAs. Here we show that preventing RNA silencing in tobacco, using a silencing suppressor, greatly reduces the symptoms caused by the Y satellite of cucumber mosaic virus. Furthermore, tomato plants expressing hairpin RNA, derived from potato spindle tuber viroid, developed symptoms similar to those of potato spindle tuber viroid infection. These results provide evidence suggesting that viroids and satellites cause disease symptoms by directing RNA silencing against physiologically important host genes. We also show that viroid and satellite RNAs are significantly resistant to RNA silencing-mediated degradation, suggesting that RNA silencing is an important selection pressure shaping the evolution of the secondary structures of these pathogens.
Resumo:
Non-linear finite deformations of articular cartilages under physiological loading conditions can be attributed to hyperelastic behavior. This paper contains experimental results of indentation tests in finite deformation and proposes an empirical based new generalized hyperelastic constitutive model to account for strain-rate dependency for humeral head cartilage tissues. The generalized model is based on existing hyperelastic constitutive relationships that are extensively used to represent biological tissues in biomechanical literature. The experimental results were obtained for three loading velocities, corresponding to low (1x10-3 s-1), moderate and high strain-rates (1x10-1 s-1), which represent physiological loading rates that are experienced in daily activities such as lifting, holding objects and sporting activities. Hyperelastic material parameters were identified by non linear curve fitting procedure. Analysis demonstrated that the material behavior of cartilage can be effectively decoupled into strain-rate independent(elastic) and dependent parts. Further, experiments conducted using different indenters indicated that the parameters obtained are significantly affected by the indenter size, potentially due to structural inhomogeneity of the tissue. The hyperelastic constitutive model developed in this paper opens a new avenue for the exploration of material properties of cartilage tissues.
Resumo:
Most multicellular organisms regulate developmental transitions by microRNAs, which are generated by an enzyme, Dicer. Insects and fungi have two Dicer-like genes, and many animals have only one, yet the plant, Arabidopsis, has four. Examining the poplar and rice genomes revealed that they contain five and six Dicer-like genes, respectively. Analysis of these genes suggests that plants require a basic set of four Dicer types which were present before the divergence of mono- and dicotyledonous plants (∼200 million years ago), but after the divergence of plants from green algae. A fifth type of Dicer seems to have evolved in monocots. © 2006 Federation of European Biochemical Societies.
Resumo:
Machine vision is emerging as a viable sensing approach for mid-air collision avoidance (particularly for small to medium aircraft such as unmanned aerial vehicles). In this paper, using relative entropy rate concepts, we propose and investigate a new change detection approach that uses hidden Markov model filters to sequentially detect aircraft manoeuvres from morphologically processed image sequences. Experiments using simulated and airborne image sequences illustrate the performance of our proposed algorithm in comparison to other sequential change detection approaches applied to this application.
Resumo:
Carbonatites are known to contain the highest concentrations of rare-earth elements (REE) among all igneous rocks. The REE distribution of carbonatites is commonly believed to be controlled by that of the rock forming Ca minerals (i.e., calcite, dolomite, and ankerite) and apatite because of their high modal content and tolerance for the substitution of Ca by light REE (LREE). Contrary to this conjecture, calcite from the Miaoya carbonatite (China), analyzed in situ by laser-ablation inductively-coupled-plasma mass-spectrometry, is characterized by low REE contents (100–260 ppm) and relatively !at chondrite-normalized REE distribution patterns [average (La/Yb)CN=1.6]. The carbonatite contains abundant REE-rich minerals, including monazite and !uorapatite, both precipitated earlier than the REE-poor calcite, and REE-fluorocarbonates that postdated the calcite. Hydrothermal REE-bearing !uorite and barite veins are not observed at Miaoya. The textural and analytical evidence indicates that the initially high concentrations of REE and P in the carbonatitic magma facilitated early precipitation of REE-rich phosphates. Subsequent crystallization of REE-poor calcite led to enrichment of the residual liquid in REE, particularly LREE. This implies that REE are generally incompatible with respect to calcite and the calcite/melt partition coefficients for heavy REE (HREE) are significantly greater than those for LREE. Precipitation of REE-fluorocarbonates late in the evolutionary history resulted in depletion of the residual liquid in LREE, as manifested by the development of HREE-enriched late-stage calcite [(La/Yb)CN=0.7] in syenites associated with the carbonatite. The observed variations of REE distribution between calcite and whole rocks are interpreted to arise from multistage fractional crystallization (phosphates!calcite!REE-!uorocarbonates) from an initially REE-rich carbonatitic liquid.
Resumo:
This paper reports on the study of the effect on adding total peripheries and sharp edges to the Schottky contact as a hydrogen sensor. Schottky contact was successfully designed and fabricated as hexagon-shape. The contact was integrated together with zinc oxide thin film and tested towards 1% hydrogen gas. Simulations of the design were conducted using COMSOL Multiphysics to observe the electric field characteristic at the contact layer. The simulation results show higher electric field induced at sharp edges with 4.18×104 V/m. Current-voltage characteristic shows 0.27 V voltage shift at 40 μA biased current.
Resumo:
There has been significant interest in developing metal oxide films with high surface area-to-volume ratio nanostructures particularly in substantially increasing the performance of Pt/oxide/semiconductor Schottky-diode gas sensors. While retaining the surface morphology of these devices, they can be further improved by modifying their nanostructured surface with a thin metal oxide layer. In this work, we analyse and compare the electrical and hydrogen-sensing properties of MoO3 nanoplatelets coated with a 4 nm layer of tantalum oxide (Ta2O5) or lanthanum oxide (La2O3). We explain in our study, that the presence of numerous defect traps at the surface (and the bulk) of the thin high-� layer causes a substantial trapping of charge during hydrogen adsorption. As a result, the interface between the Pt electrode and the thin oxide layer becomes highly polarised. Measurement results also show that the nanoplatelets coated with Ta2O5 can enable the device to be more sensitive (a larger voltage shift under hydrogen exposure) than those coated with La2O3.
Resumo:
The reaction of the aromatic distonic peroxyl radical cations N-methyl pyridinium-4-peroxyl (PyrOO center dot+) and 4-(N,N,N-trimethyl ammonium)-phenyl peroxyl (AnOO center dot+), with symmetrical dialkyl alkynes 10?ac was studied in the gas phase by mass spectrometry. PyrOO center dot+ and AnOO center dot+ were produced through reaction of the respective distonic aryl radical cations Pyr center dot+ and An center dot+ with oxygen, O2. For the reaction of Pyr center dot+ with O2 an absolute rate coefficient of k1=7.1X10-12 cm3 molecule-1 s-1 and a collision efficiency of 1.2?% was determined at 298 K. The strongly electrophilic PyrOO center dot+ reacts with 3-hexyne and 4-octyne with absolute rate coefficients of khexyne=1.5X10-10 cm3 molecule-1 s-1 and koctyne=2.8X10-10 cm3 molecule-1 s-1, respectively, at 298 K. The reaction of both PyrOO center dot+ and AnOO center dot+ proceeds by radical addition to the alkyne, whereas propargylic hydrogen abstraction was observed as a very minor pathway only in the reactions involving PyrOO center dot+. A major reaction pathway of the vinyl radicals 11 formed upon PyrOO center dot+ addition to the alkynes involves gamma-fragmentation of the peroxy O?O bond and formation of PyrO center dot+. The PyrO center dot+ is rapidly trapped by intermolecular hydrogen abstraction, presumably from a propargylic methylene group in the alkyne. The reaction of the less electrophilic AnOO center dot+ with alkynes is considerably slower and resulted in formation of AnO center dot+ as the only charged product. These findings suggest that electrophilic aromatic peroxyl radicals act as oxygen atom donors, which can be used to generate alpha-oxo carbenes 13 (or isomeric species) from alkynes in a single step. Besides gamma-fragmentation, a number of competing unimolecular dissociative reactions also occur in vinyl radicals 11. The potential energy diagrams of these reactions were explored with density functional theory and ab initio methods, which enabled identification of the chemical structures of the most important products.
Resumo:
Ozone-induced dissociation (OzID) is an alternative ion activation method that relies on the gas phase ion-molecule reaction between a mass-selected target ion and ozone in an ion trap mass spectrometer. Herein, we evaluated the performance of OzID for both the structural elucidation and selective detection of conjugated carbon-carbon double bond motifs within lipids. The relative reactivity trends for \[M + X](+) ions (where X = Li, Na, K) formed via electrospray ionization (ESI) of conjugated versus nonconjugated fatty acid methyl esters (FAMEs) were examined using two different OzID-enabled linear ion-trap mass spectrometers. Compared with nonconjugated analogues, FAMEs derived from conjugated linoleic acids were found to react up to 200 times faster and to yield characteristic radical cations. The significantly enhanced reactivity of conjugated isomers means that OzID product ions can be observed without invoking a reaction delay in the experimental sequence (i.e., trapping of ions in the presence of ozone is not required). This possibility has been exploited to undertake neutral-loss scans on a triple quadrupole mass spectrometer targeting characteristic OzID transitions. Such analyses reveal the presence of conjugated double bonds in lipids extracted from selected foodstuffs. Finally, by benchmarking of the absolute ozone concentration inside the ion trap, second order rate constants for the gas phase reactions between unsaturated organic ions and ozone were obtained. These results demonstrate a significant influence of the adducting metal on reaction rate constants in the fashion Li > Na > K.
Resumo:
Many large-scale GNSS CORS networks have been deployed around the world to support various commercial and scientific applications. To make use of these networks for real-time kinematic positioning services, one of the major challenges is the ambiguity resolution (AR) over long inter-station baselines in the presence of considerable atmosphere biases. Usually, the widelane ambiguities are fixed first, followed by the procedure of determination of the narrowlane ambiguity integers based on the ionosphere-free model in which the widelane integers are introduced as known quantities. This paper seeks to improve the AR performance over long baseline through efficient procedures for improved float solutions and ambiguity fixing. The contribution is threefold: (1) instead of using the ionosphere-free measurements, the absolute and/or relative ionospheric constraints are introduced in the ionosphere-constrained model to enhance the model strength, thus resulting in the better float solutions; (2) the realistic widelane ambiguity precision is estimated by capturing the multipath effects due to the observation complexity, leading to improvement of reliability of widelane AR; (3) for the narrowlane AR, the partial AR for a subset of ambiguities selected according to the successively increased elevation is applied. For fixing the scalar ambiguity, an error probability controllable rounding method is proposed. The established ionosphere-constrained model can be efficiently solved based on the sequential Kalman filter. It can be either reduced to some special models simply by adjusting the variances of ionospheric constraints, or extended with more parameters and constraints. The presented methodology is tested over seven baselines of around 100 km from USA CORS network. The results show that the new widelane AR scheme can obtain the 99.4 % successful fixing rate with 0.6 % failure rate; while the new rounding method of narrowlane AR can obtain the fix rate of 89 % with failure rate of 0.8 %. In summary, the AR reliability can be efficiently improved with rigorous controllable probability of incorrectly fixed ambiguities.