936 resultados para HIGH-DIELECTRIC-CONSTANT
Resumo:
Information display technology is a rapidly growing research and development field. Using state-of-the-art technology, optical resolution can be increased dramatically by organic light-emitting diode - since the light emitting layer is very thin, under 100nm. The main question is what pixel size is achievable technologically? The next generation of display will considers three-dimensional image display. In 2D , one is considering vertical and horizontal resolutions. In 3D or holographic images, there is another dimension – depth. The major requirement is the high resolution horizontal dimension in order to sustain the third dimension using special lenticular glass or barrier masks, separate views for each eye. The high-resolution 3D display offers hundreds of more different views of objects or landscape. OLEDs have potential to be a key technology for information displays in the future. The display technology presented in this work promises to bring into use bright colour 3D flat panel displays in a unique way. Unlike the conventional TFT matrix, OLED displays have constant brightness and colour, independent from the viewing angle i.e. the observer's position in front of the screen. A sandwich (just 0.1 micron thick) of organic thin films between two conductors makes an OLE Display device. These special materials are named electroluminescent organic semi-conductors (or organic photoconductors (OPC )). When electrical current is applied, a bright light is emitted (electrophosphorescence) from the formed Organic Light-Emitting Diode. Usually for OLED an ITO layer is used as a transparent electrode. Such types of displays were the first for volume manufacture and only a few products are available in the market at present. The key challenges that OLED technology faces in the application areas are: producing high-quality white light achieving low manufacturing costs increasing efficiency and lifetime at high brightness. Looking towards the future, by combining OLED with specially constructed surface lenses and proper image management software it will be possible to achieve 3D images.
Resumo:
Lasers play an important role for medical, sensoric and data storage devices. This thesis is focused on design, technology development, fabrication and characterization of hybrid ultraviolet Vertical-Cavity Surface-Emitting Lasers (UV VCSEL) with organic laser-active material and inorganic distributed Bragg reflectors (DBR). Multilayer structures with different layer thicknesses, refractive indices and absorption coefficients of the inorganic materials were studied using theoretical model calculations. During the simulations the structure parameters such as materials and thicknesses have been varied. This procedure was repeated several times during the design optimization process including also the feedback from technology and characterization. Two types of VCSEL devices were investigated. The first is an index coupled structure consisting of bottom and top DBR dielectric mirrors. In the space in between them is the cavity, which includes active region and defines the spectral gain profile. In this configuration the maximum electrical field is concentrated in the cavity and can destroy the chemical structure of the active material. The second type of laser is a so called complex coupled VCSEL. In this structure the active material is placed not only in the cavity but also in parts of the DBR structure. The simulations show that such a distribution of the active material reduces the required pumping power for reaching lasing threshold. High efficiency is achieved by substituting the dielectric material with high refractive index for the periods closer to the cavity. The inorganic materials for the DBR mirrors have been deposited by Plasma- Enhanced Chemical Vapor Deposition (PECVD) and Dual Ion Beam Sputtering (DIBS) machines. Extended optimizations of the technological processes have been performed. All the processes are carried out in a clean room Class 1 and Class 10000. The optical properties and the thicknesses of the layers are measured in-situ by spectroscopic ellipsometry and spectroscopic reflectometry. The surface roughness is analyzed by atomic force microscopy (AFM) and images of the devices are taken with scanning electron microscope (SEM). The silicon dioxide (SiO2) and silicon nitride (Si3N4) layers deposited by the PECVD machine show defects of the material structure and have higher absorption in the ultra violet range compared to ion beam deposition (IBD). This results in low reflectivity of the DBR mirrors and also reduces the optical properties of the VCSEL devices. However PECVD has the advantage that the stress in the layers can be tuned and compensated, in contrast to IBD at the moment. A sputtering machine Ionsys 1000 produced by Roth&Rau company, is used for the deposition of silicon dioxide (SiO2), silicon nitride (Si3N4), aluminum oxide (Al2O3) and zirconium dioxide (ZrO2). The chamber is equipped with main (sputter) and assisted ion sources. The dielectric materials were optimized by introducing additional oxygen and nitrogen into the chamber. DBR mirrors with different material combinations were deposited. The measured optical properties of the fabricated multilayer structures show an excellent agreement with the results of theoretical model calculations. The layers deposited by puttering show high compressive stress. As an active region a novel organic material with spiro-linked molecules is used. Two different materials have been evaporated by utilizing a dye evaporation machine in the clean room of the department Makromolekulare Chemie und Molekulare Materialien (mmCmm). The Spiro-Octopus-1 organic material has a maximum emission at the wavelength λemission = 395 nm and the Spiro-Pphenal has a maximum emission at the wavelength λemission = 418 nm. Both of them have high refractive index and can be combined with low refractive index materials like silicon dioxide (SiO2). The sputtering method shows excellent optical quality of the deposited materials and high reflection of the multilayer structures. The bottom DBR mirrors for all VCSEL devices were deposited by the DIBS machine, whereas the top DBR mirror deposited either by PECVD or by combination of PECVD and DIBS. The fabricated VCSEL structures were optically pumped by nitrogen laser at wavelength λpumping = 337 nm. The emission was measured by spectrometer. A radiation of the VCSEL structure at wavelength 392 nm and 420 nm is observed.
Resumo:
Soil moisture content, theta, of a bare and vegetated UK gravelly sandy loam soil (in situ and repacked in small lysimeters) was measured using various dielectric instruments (single-sensor ThetaProbes, multi-sensor Profile Probes, and Aquaflex Sensors), at depths ranging between 0.03 and I m, during the summers of 2001 (in situ soil) and 2002 (mini-lysimeters). Half-hourly values of evaporation, E, were calculated from diurnal changes in total soil profile water content, using the soil water balance equation. For the bare soil field, Profile Probes and ML2x ThetaProbes indicated a diurnal course of theta that did not concur with typical soil physical observations: surface layer soil moisture content increased from early morning until about midday, after which theta declined, generally until the early evening. The unexpected course of theta was positively correlated to soil temperature, T-s, also at deeper depths. Aquaflex and ML1 ThetaProbe (older models) outputs, however, reflected common observations: 0 increased slightly during the night (capillary rise) and decreased from the morning until late afternoon (as a result of evaporation). For the vegetated plot, the spurious diurnal theta fluctuations were less obvious, because canopy shading resulted in lower amplitudes of T-s. The unrealistic theta profiles measured for the bare and vegetated field sites caused diurnal estimates of E to attain downward daytime and upward night-time values. In the mini-lysimeters, at medium to high moisture contents, theta values measured by (ML2x) ThetaProbes followed a relatively realistic course, and predictions of E from diurnal changes in vertically integrated theta generally compared well with lysimeter estimates of E. However, time courses of theta and E became comparable to those observed for the field plots when the soil in the lysimeters reached relatively low values of theta. Attempts to correct measured theta for fluctuations in T, revealed that no generally applicable formula could be derived. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper we show stability and convergence for a novel Galerkin boundary element method approach to the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data. This problem models, for example, outdoor sound propagation over inhomogeneous flat terrain. To achieve a good approximation with a relatively low number of degrees of freedom we employ a graded mesh with smaller elements adjacent to discontinuities in impedance, and a special set of basis functions for the Galerkin method so that, on each element, the approximation space consists of polynomials (of degree $\nu$) multiplied by traces of plane waves on the boundary. In the case where the impedance is constant outside an interval $[a,b]$, which only requires the discretization of $[a,b]$, we show theoretically and experimentally that the $L_2$ error in computing the acoustic field on $[a,b]$ is ${\cal O}(\log^{\nu+3/2}|k(b-a)| M^{-(\nu+1)})$, where $M$ is the number of degrees of freedom and $k$ is the wavenumber. This indicates that the proposed method is especially commendable for large intervals or a high wavenumber. In a final section we sketch how the same methodology extends to more general scattering problems.
Resumo:
Projections of future global sea level depend on reliable estimates of changes in the size of polar ice sheets. Calculating this directly from global general circulation models (GCMs) is unreliable because the coarse resolution of 100 km or more is unable to capture narrow ablation zones, and ice dynamics is not usually taken into account in GCMs. To overcome these problems a high-resolution (20 km) dynamic ice sheet model has been coupled to the third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3). A novel feature is the use of two-way coupling, so that climate changes in the GCM drive ice mass changes in the ice sheet model that, in turn, can alter the future climate through changes in orography, surface albedo, and freshwater input to the model ocean. At the start of the main experiment the atmospheric carbon dioxide concentration was increased to 4 times the preindustrial level and held constant for 3000 yr. By the end of this period the Greenland ice sheet is almost completely ablated and has made a direct contribution of approximately 7 m to global average sea level, causing a peak rate of sea level rise of 5 mm yr-1 early in the simulation. The effect of ice sheet depletion on global and regional climate has been examined and it was found that apart from the sea level rise, the long-term effect on global climate is small. However, there are some significant regional climate changes that appear to have reduced the rate at which the ice sheet ablates.
Resumo:
Calculations of the absorption of solar radiation by atmospheric gases, and water vapor in particular, are dependent on the quality of databases of spectral line parameters. There has been increasing scrutiny of databases such as HITRAN in recent years, but this has mostly been performed on a band-by-band basis. We report nine high-spectral-resolution (0.03 cm(-1)) measurements of the solar radiation reaching the surface in southern England over the wave number range 2000 to 12,500 cm(-1) (0.8 to 5 mm) that allow a unique assessment of the consistency of the spectral line databases over this entire spectral region. The data are assessed in terms of the modeled water vapor column that is required to bring calculations and observations into agreement; for an entirely consistent database, this water vapor column should be constant with frequency. For the HITRAN01 database, the spread in water vapor column is about 11%, with distinct shifts between different spectral regions. The HITRAN04 database is in significantly better agreement (about 5% spread) in the completely updated 3000 to 8000 cm(-1) spectral region, but inconsistencies between individual spectral regions remain: for example, in the 8000 to 9500 cm(-1) spectral region, the results indicate an 18% (+/- 1%) underestimate in line intensities with respect to the 3000 to 8000 cm(-1) region. These measurements also indicate the impact of isotopic fractionation of water vapor in the 2500 to 2900 cm(-1) range, where HDO lines dominate over the lines of the most abundant isotope of H2O.
Resumo:
A novel series of polyaromatic ionomers with similar equivalent weights but very different sulphonic acid distributions along the ionomer backbone has been designed and prepared. By synthetically organising the sequence-distribution so that it consists of fully defined ionic segments (containing singlets, doublets or quadruplets of sulphonic acid groups) alternating strictly with equally well-defined nonionic spacer segments, a new class of polymers which may be described as microblock ionomers has been developed. These materials exhibit very different properties and morphologies from analogous randomly substituted systems. Progressively extending the nonionic spacer length in the repeat unit (maintaining a constant equivalent weight by increasing the degree of sulphonation. of the ionic segment) leads to an increasing degree of nanophase separation between hydrophilic and hydrophobic domains in these materials. Membranes cast from ionomers with the more highly phase-separated morphologies show significantly higher onset temperatures for uncontrolled swelling in water. This new type of ionomer design has enabled the fabrication of swelling-resistant hydrocarbon membranes, suitable for fuel cell operation, with very much higher ion exchange capacities (>2 meq g(-1)) than those previously reported in the literature. When tested in a fuel cell at high temperature (120 degrees C) and low relative humidity (35% RH), the best microblock membrane matched the performance of Nafion 112. Moreover, comparative low load cycle testing of membrane -electrode assemblies suggests that the durability of the new membranes under conditions of high temperature and low relative humidity is superior to that of conventional perfluorinated materials.
Resumo:
A new primary model based on a thermodynamically consistent first-order kinetic approach was constructed to describe non-log-linear inactivation kinetics of pressure-treated bacteria. The model assumes a first-order process in which the specific inactivation rate changes inversely with the square root of time. The model gave reasonable fits to experimental data over six to seven orders of magnitude. It was also tested on 138 published data sets and provided good fits in about 70% of cases in which the shape of the curve followed the typical convex upward form. In the remainder of published examples, curves contained additional shoulder regions or extended tail regions. Curves with shoulders could be accommodated by including an additional time delay parameter and curves with tails shoulders could be accommodated by omitting points in the tail beyond the point at which survival levels remained more or less constant. The model parameters varied regularly with pressure, which may reflect a genuine mechanistic basis for the model. This property also allowed the calculation of (a) parameters analogous to the decimal reduction time D and z, the temperature increase needed to change the D value by a factor of 10, in thermal processing, and hence the processing conditions needed to attain a desired level of inactivation; and (b) the apparent thermodynamic volumes of activation associated with the lethal events. The hypothesis that inactivation rates changed as a function of the square root of time would be consistent with a diffusion-limited process.
Resumo:
We consider scattering of a time harmonic incident plane wave by a convex polygon with piecewise constant impedance boundary conditions. Standard finite or boundary element methods require the number of degrees of freedom to grow at least linearly with respect to the frequency of the incident wave in order to maintain accuracy. Extending earlier work by Chandler-Wilde and Langdon for the sound soft problem, we propose a novel Galerkin boundary element method, with the approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh with smaller elements closer to the corners of the polygon. Theoretical analysis and numerical results suggest that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency of the incident wave.
Resumo:
The effect of high-pressure (HP) pretreatment on oil uptake of potato slices is examined in this paper. Potato slices were treated either by HP or thermal blanching, or a combination of thermal blanching followed by HP prior to frying. The effect of HP on starch gelatinization and potato microstructure was assessed by differential scanning calorimeter and environmental scanning electron microscope (ESEM), respectively. After treatments, the slices were fried in sunflower oil at 185 °C for a predetermined time. Frying time was either kept constant (4 min) or varied according to the time needed to reach a desired moisture content of ≈2%. The high pressure applied in this study was found not to be sufficient to cause a significant degree of starch gelatinization. Analysis of the ESEM images showed that blanching had a limited effect on cell wall integrity. HP pretreatment was found to increase the oil uptake marginally. When frying for a fixed time, the highest total oil content was found in slices treated at 200 MPa for 5 min. The oil content was found to increase significantly (p<0.05) to 41.23±1.82 compared to 29.03±0.21 in the control slices. The same effect of pressure on oil content was found when the time of frying varied. On the other hand, HP pretreatment was found to decrease the frying time required to achieve a given moisture content. Thus, high-pressure pretreatment may be used to reduce the frying time, but not oil uptake.
Resumo:
Interpretation of ice-core records is currently limited by paucity of modelling at adequate temporal and spatial resolutions. Several key questions relate to mechanisms of polar amplification and inter-hemispheric coupling on glacial/interglacial timescales. Here, we present the first results from a large set of global ocean–atmosphere climate model ‘snap-shot’ simulations covering the last 120 000 years using the Hadley Centre climate model (HadCM3) at up to 1 kyr temporal resolution. Two sets of simulations were performed in order to examine the roles of orbit and greenhouse gases versus ice-sheet forcing of orbital-scale climate change. A series of idealised Heinrich events were also simulated, but no changes to aerosols or vegetation were prescribed. This paper focuses on high latitudes and inter-hemispheric linkages. The simulations reproduce polar temperature trends well compared to ice-core reconstructions, although the magnitude is underestimated. Polar amplification varies with obliquity, but this variability is dampened by including variations in land ice coverage, while the overall amplification factor increases. The relatively constant amplification of Antarctic temperatures (with ice-sheet forcing included) suggests it is possible to use Antarctic temperature reconstructions to estimate global changes (which are roughly half the magnitude). Atlantic Ocean overturning circulation varies considerably only with the introduction of Northern Hemisphere ice sheets, but only weakens in the North Atlantic in the deep glacial, when ocean–sea-ice feedbacks result in the movement of the region of deep convection to lower latitudes and with the introduction of freshwater to the surface North Atlantic in order to simulate Heinrich events.
Resumo:
The total reactive phosphorus (TRP) and nitrate concentrations of the River Enborne, southern England, were monitored at hourly interval between January 2010 and December 2011. The relationships between these high-frequency nutrient concentration signals and flow were used to infer changes in nutrient source and dynamics through the annual cycle and each individual storm event, by studying hysteresis patterns. TRP concentrations exhibited strong dilution patterns with increasing flow, and predominantly clockwise hysteresis through storm events. Despite the Enborne catchment being relatively rural for southern England, TRP inputs were dominated by constant, non-rain-related inputs from sewage treatment works (STW) for the majority of the year, producing the highest phosphorus concentrations through the spring–summer growing season. At higher river flows, the majority of the TRP load was derived from within-channel remobilisation of phosphorus from the bed sediment, much of which was also derived from STW inputs. Therefore, future phosphorus mitigation measures should focus on STW improvements. Agricultural diffuse TRP inputs were only evident during storms in the May of each year, probably relating to manure application to land. The nitrate concentration–flow relationship produced a series of dilution curves, indicating major inputs from groundwater and to a lesser extent STW. Significant diffuse agricultural inputs with anticlockwise hysteresis trajectories were observed during the first major storms of the winter period. The simultaneous investigation of high-frequency time series data, concentration–flow relationships and hysteresis behaviour through multiple storms for both phosphorus and nitrate offers a simple and innovative approach for providing new insights into nutrient sources and dynamics.
Resumo:
Endostatin (ES) is a potent inhibitor of angiogenesis and tumor growth. Continuous ES delivery of ES improves the efficacy and potency of the antitumoral therapy. The TheraCyte (R) system is a polytetrafluoroethylene (PTFE) semipermeable membrane macroencapsulation system for implantation of genetically engineered cells specially designed for the in vivo delivery of therapeutic proteins, such as ES, which circumvents the problem of limited half-life and variation in circulating levels. In order to enable neovascularization at the tissues adjacent to the devices prior to ES secretion by the cells inside them, we designed a scheme in which empty TheraCyte (R) devices were preimplanted SC into immunodeficient mice. Only after healing (17 days later) were Chinese hamster ovary cells expressing ES injected into the preimplanted devices. In another model for device implantation, the cells expressing ES where loaded into the immunoisolation devices prior to implantation into the animals, and the TheraCyte (R) were then immediately implanted SC into the mice. Throughout the 2-month study, constant high ES levels of up to 3.7 mu g/ml were detected in the plasma of the mice preimplanted with the devices, while lower but also constant levels of ES (up to 2.1 mu g/ml plasma) were detected in the mice that had received devices preloaded with the ES-expressing cells. Immunohistochemistry using anti-ES antibody showed reaction within the device and outside it, demonstrating that ES, secreted by the confined recombinant cells, permeated through the membrane and reached the surrounding tissues.
Resumo:
The biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from sucrose and propionic acid by Burkholderia sacchari IPT 189 was studied using a two-stage bioreactor process. In the first stage, this bacterium was cultivated in a balanced culture medium until sucrose exhaustion. In the second stage, a solution containing sucrose and propionic acid as carbon source was fed to the bioreactor at various sucrose/propionic acid (s/p) ratios at a constant specific flow rate. Copolymers with 3HV content ranging from 40 down to 6.5 (mol%) were obtained with 3HV yield from propionic acid (Y-3HV/prop) increasing from 1.10 to 1.34 g g(-1). Copolymer productivity of 1 g l(-1) h(-1) was obtained with polymer biomass content rising up to 60% by increasing a specific flow rate at a constant s/p ratio. Increasing values of 3HV content were obtained by varying the s/p ratios. A simulation of production costs considering Y-3HV/prop obtained in the present work indicated that a reduction of up to 73% can be reached, approximating US$ 1.00 per kg which is closer to the value to produce P3HB from sucrose (US$ 0.75 per kg).
Resumo:
We investigate the dielectric dispersion of water, specially in the low-frequency range, by using the impedance spectroscopy technique. The frequency dependencies of the real R and imaginary Z parts of the impedance Could not be explained by means of the Usual description of the dielectric properties of the water as all insulating liquid containing ions. This is due to the incomplete knowledge of the parameters entering in the fundamental equations describing the evolution of the system, and oil the mechanisms regulating the exchange of charge of the cell with the external circuit. We propose a simple description of our experimental data based on the model of Debye, by invoking a dc conductivity of the cell, related to the nonblocking character of the electrodes. A discussion on the electric Circuits able to simulate the cell under investigation, based oil bulk and Surface elements, is also reported. We find that the simple circuit formed by a series of two parallels of resistance and capacitance is able to reproduce the experimental data concerning the real and imaginary part of the electrical impedance of the cell for frequency larger than 1 Hz. According to this description, one of the parallels takes into account the electrical properties of interface between the electrode and water, and the other of the bulk. For frequency lower than 1 Hz, a good agreement with the experimental data is obtained by simulating the electrical properties of the interface by means of the constant phase element.