969 resultados para Gray Iron Foundry Industry.
Resumo:
The wear resistance of high chromium iron is well recorded. However, the same is not the case as regards the use of manganese at higher percentages in high chromium irons and its influence on wear behaviour. Hence, this work highlights the slurry wear characteristics of chromium 16–19%) iron following the introduction of manganese at two levels i.e. 5 and 10%. It is known that the wear properties are dictated by the microstructural features. To alter the structure, the cooling rate of casting has been varied by adopting two different types of moulds (i.e. sand and metal) and subsequently subjecting to thermal treatment. The as-cast and heat treated samples are examined for microstructure and then evaluated for hardness and slurry erosion properties. As the manganese content is increased from 5 to 10%, the hardness showed a decrease in value both in the as-cast and heat treated conditions. The slurry erosion loss, expectedly, showed an increase irrespective of the sample condition (i.e. mould type/heat treatment adopted). The findings are corroborated with the microstructural features obtained through optical and scanning electron microscopy.
Resumo:
Iron(III) complexes [Fe(L)(2)]Cl (1-3), where L is monoanionic N-salicylidene-arginine (sal-argH for 1), hydroxynaphthylidene-arginine (nap-argH for 2) and N-salicylidene-lysine (sal-lysH for 3), were prepared and their DNA binding and photo-induced DNA cleavage activity studied. Complex 3 as its hexafluorophosphate salt [Fe(sal-lysH)(2)](PF6)center dot 6H(2)O (3a) was structurally characterized by single crystal Xray crystallography. The crystals belonged to the triclinic space group P-1. The complex has two tridentate ligands in FeN2O4 coordination geometry with two pendant cationic amine moieties. Complexes 1 and 2 with two pendant cationic guanidinium moieties are the structural models for the antitumor antibiotics netropsin. The complexes are stable and soluble in water. They showed quasi-reversible Fe(III)/Fe(II) redox couple near 0.6 V in H2O-0.1 M KCl. The high-spin 3d(5)-iron(III) complexes with mu(eff) value of similar to 5.9 mu(B) displayed ligand-to-metal charge transfer electronic band near 500 mm in Tris-HCl buffer. The complexes show binding to Calf Thymus (CT) DNA. Complex 2 showed better binding propensity to the synthetic oligomer poly(dA)center dot poly(dT) than to CT-DNA or poly(dG)center dot poly(dC). All the complexes displayed chemical nuclease activity in the presence of 3-mercaptopropionic acid as a reducing agent and cleaved supercoiled pUC19 DNA to its nicked circular form. They exhibited photo-induced DNA cleavage activity in UV-A light and visible light via a mechanistic pathway that involves the formation of reactive hydroxyl radical species. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Abrasion and slurry erosion behaviour of chromium-manganese iron samples with chromium (Cr) in the range similar to 16-19% and manganese (Mn) at 5 and 10% levels have been characterized for hardness followed by microstructural examination using optical and scanning electron microscopy. Positron lifetime studies have been conducted to understand the defects/microporosity influence on the microstructure. The samples were heat treated and characterized to understand the structural transformations in the matrix. The data reveals that hardness decreased with increase in Mn content from 5 to 10% in the first instance and then increase in the section size in the other case, irrespective of the sample conditions. The abrasion and slurry erosion losses show increase with increase in the section size as well as with increase in Mn content. The positron results show that as hardness increases from as-cast to heat treated sample, the positron trapping rate and hence defect concentration showed opposite trend as expected. So a good correlation between defects concentration and the hardness has been observed. These findings also corroborate well with the microstructural features obtained from optical and scanning electron microscopy. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Field instrumentation of an in-service cast iron gas pipe buried in a residential area is detailed in this paper. The aim of the study was to monitor the long-term pipe behavior to understand the mechanisms of pipe bending in relation to ground movement as a result of seasonal fluctuation of soil moisture content. Field data showed that variation of soil temperature, suction, and moisture content are closely related to the prevailing climate. Change of soil temperature is generally related to the ambient air temperature, with a variation of approximately −3°C −3°C per meter depth from the ground surface in summer (decrease with depth) and winter (increase with depth). Seasonal cyclic variation in moisture content was observed with maxima in February and March, and a minimum around September. The pipe top was under tensile strain during summer and subsequently subjected to compressive strain as soil swelling occurred as a result of increase in moisture content. The study suggests that downward pipe bending occurs in summer because of soil shrinkage, while upward pipe bending occurs in winter when the soil swells.
Resumo:
This study investigates how offshore information technology (IT) service providers (vendors) coordinate work with their clients (employers) in order to succeed in the global IT offshore outsourcing industry. We reviewed literature on coordination studies, interviewed offshore service providers in the Philippines, and used thematic analysis to analyse coordination practices from the point of view of these individual vendors in a newly industrialized country. We used Olson and Olson's framework on 'collaboration at a distance' as a lens to structure the results. The study provides an understanding of vendors' individual attitudes towards the coordination of distributed work and draws attention to how differences in power affect the work situation of vendors, and by implication all stakeholders. We offer this insight as a way to enhance existing CSCW frameworks, by imbuing them with the perspective of non-equal relationships. The study found that vendors were generally able to produce outputs that satisfy their clients, however these results were only achieved because individuals were willing to take risks and make sacrifices in their personal lives. The relationship was further characterised by a complex interplay between the client's control of the overall work arrangements and the vendors' ability to establish a level of autonomy in their work practices and their flexible use of coordination tools.
Resumo:
Product success is substantially influenced by satisfaction of knowledge needs of designers, and many tools and methods have been proposed to support these needs. However, adoption of these methods in industry is minimal. This may be due to an inadequate understanding of the knowledge needs of designers in industry. This research attempts to develop a better understanding of these needs by undertaking descriptive studies in an industry. We propose a taxonomy of knowledge, and evaluate this by analyzing the questions asked by the designers involved in the study during their interactions. Using the taxonomy, we converted the questions asked into a generic form. The generic questions provide an understanding about what knowledge must be captured during design, and what its structure should be.
Resumo:
A new ternary iron(III) complex [FeL(dpq)] containing dipyridoquinoxaline (dpq) and 2,2-bis(3,5-di-tert-butyl-2-hydroxybenzyl)aminoacetic acid (H3L) is prepared and structurally characterized by X-ray crystallography. The high-spin complex with a FeN3O3 core shows a quasi-reversible iron(III)/iron(II) redox couple at -0.62 V (vs SCE) in DMF/0.1 M TBAP and a broad visible band at 470 nm in DMF/Tris buffer. Laser photoexcitation of this phenolate (L)-to-iron(III) charge-transfer band at visible wavelengths including red light of >= 630 nm leads to cleavage of supercoiled pUC19 DNA to its nicked circular form via a photoredox pathway forming hydroxyl radicals.
Resumo:
Here we report on the magnetic properties of iron carbide nanoparticles embedded in a carbon matrix. Granular distributions of nanoparticles in an inert matrix, of potential use in various applications, were prepared by pyrolysis of organic precursors using the thermally assisted chemical vapour deposition method. By varying the precursor concentration and preparation temperature, compositions with varying iron concentration and nanoparticle sizes were made. Powder x-ray diffraction, transmission electron microscopy and Mossbauer spectroscopy studies revealed the nanocrystalline iron carbide (Fe3C) presence in the partially graphitized matrix. The dependence of the magnetic properties on the particle size and temperature (10 K < T < 300 K) were studied using superconducting quantum interference device magnetometry. Based on the affect of surrounding carbon spins, the observed magnetic behaviour of the nanoparticle compositions, such as the temperature dependence of magnetization and coercivity, can be explained.
Resumo:
This paper investigates how students’ learning experience can be enhanced by participating in the Industry-Based Learning (IBL) program. In this program, the university students coming into the industry to experience how the business is run. The students’ learning media is now not coming from the textbooks or the lecturers but from learning by doing. This new learning experience could be very interesting for students but at the same time could also be challenging. The research involves interviewing a number of students from the IBL programs, the academic staff from the participated university who has experience in supervising students and the employees of the industry who supported and supervised the students in their work placements. The research findings offer useful insights and create new knowledge in the field of education and learning. The research contributes to the existing knowledge by providing a new understanding of the topic as it applied to the Indonesian context.
Resumo:
The collaboration between universities and industries has become increasingly important for the development of Science and Technology. This is particularly more prominent in the Science Technology Engineering and Mathematics (STEM) disciplines. Literature suggest that the key element of University-Industry Partnership (UIP) is the exchange of knowledge that is mutually beneficial for both parties. One real example of the collaborations is Industry-Based Learning (IBL) in which university students are coming into industries to experience and learn how the skills and knowledge acquired in the classroom are implemented in work places. This paper investigate how the University-Industry Collaboration program is implemented though Industry-Based Learning (IBL) at Indonesian Universities. The research findings offer useful insights and create a new knowledge in the field of STEM education and collaborative learning. The research will contribute to existing knowledge by providing empirical understanding of this topic. The outcomes can be used to improve the quality of University-Industry Partnership programs at Indonesian Universities and inform Indonesian higher education authorities and their industrial partners of an alternative approach to enhance their IBL programs.
Resumo:
- Purpose The purpose of this paper is to investigate the current skills gap in both generic and skill areas within the construction industry in Queensland, Australia. - Design/methodology/approach An internet-based survey was administered to collect the opinions of construction employees about the workplace-training environment and their perceptions towards training. The survey intended to address the following research questions, specifically in relation to the construction industry. - Findings The survey results reveal that whilst overall participation in workplace training is high, the current workplace training environments do not foster balanced skill development. The study reveals that in the current absence of a formal and well-balanced training mechanism, construction workers generally resort to their own informal self-development initiatives to develop the needed role-specific theoretical knowledge. - Research limitations/implications The findings of the research are based on the data primarily collected in the construction industry in Queensland, Australia. The data are limited to a single Tier 2 construction company. - Practical implications The findings of this study can be utilised to suggest improvements in the current (or develop new) workplace training initiatives. - Social implications The research suggests that workplace training has positive relationship with career growth. The results suggest that in the construction industry, employees are generally well aware of the importance of workplace training in their career development and they largely appreciate training as being a critical factor for developing their capacity to perform their roles successfully, and to maintain their employability. - Originality/value This paper is unique as it investigates the current skills gap in both generic and skill areas within the construction industry in Queensland, Australia. So far no work has been undertaken to identify and discusses the main method of workplace learning within the Tier 2 industry in the context of Queensland Australia.
Resumo:
NMR study of ferrous fluosilicate hexahydrate indicated the presence of motion of both proton and fluorine nuclei. Only a single narrow line was observed for protons for any arbitrary orientation of a single crystal with respect to the applied magnetic field. This can be interpreted in terms of a phase-correlated flip motion of the interproton vectors between two disordered orientations or in terms of a hindered rotation of the Fe(H2O) 6 octahedron about the fourfold axes, together with the flip motion. The fluorine second moment indicated that the SiF6 octahedron also is undergoing reorientation. The temperature variation of the powder linewidth showed a transition around 195°K and led to rather low values for the potential barriers hindering the motions. No significant temperature variation of the linewidth was observed for hexahydrated cobalt fluosilicate in the temperature range between 90°K and room temperature. Similar observations in a powder sample of tetrahydrated copper fluosilicate also showed the presence of internal motions. The linewidth transition in this case took place at about 220°K and was found to be rather abrupt. The potential barrier for the motion was found to be relatively high.
Resumo:
Solutions of potassium chloride (pH-buffered and 1-molat) equilibrated at 350°C with pyrrhotite, pyrite, and magnetite contained approximately 1 millimole of reduced sulfur and less than 0.1 millimole of oxidized sulfur per kilogram. Similar solutions equilibrated with pyrite, magnetite, and hematite contained approximately 1 millimole of reduced sulfur, but 3 to 6 millimoles of oxidized sulfur per kilogram. Both types of solutions contained less than 0.1 millimole of iron per kilogram at pH ≥ 6 and approximately 100 millimoles per kilogram at pH 2.
Resumo:
Iron deficiency has been found to occur in Neurospora crassa grown in sole nitrate medium, even when levels of iron, normal with respect to the usual ammonium nitrate medium, were provided. Under this condition, mycelial nitrate reductase and catalase levels were high, there was inhibition of growth, and there was accumulation of an iron-binding compound and nitrite in the culture filtrate. These were counteracted by increasing the iron level of the sole nitrate medium, except that the catalase level increased still further. Evidence is presented for the control of nitrate reductase by iron.