949 resultados para Genetic distance
Resumo:
This research examines how a tourist’s degree of psychological entitlement (sense of deservingness) influences their responses to hotels that differ in cultural distance. Using a visit to China by Western tourists as a context, an experiment shows that entitled tourists respond more negatively to high cultural distance hotel environments compared with low cultural distance environments. Results are mediated by tourist irritation. Research contributions include demonstrating how entitlement moderates cultural distance effects, revealing tourist irritation as a mechanism that explains these effects, and showing how psychological entitlement influences how tourists react to hotel environments when visiting a foreign destination.
Resumo:
The temperature-sensitive prp24-1 mutation defines a gene product required for the first step in pre-mRNA splicing. PRP24 is probably a component of the U6 snRNP particle. We have applied genetic reversion analysis to identify proteins that interact with PRP24. Spontaneous revertants of the temperature-sensitive (ts) prp24-1 phenotype were analyzed for those that are due to extragenic suppression. We then extended our analysis to screen for suppressors that confer a distinct conditional phenotype. We have identified a temperature-sensitive extragenic suppressor, which was shown by genetic complementation analysis to be allelic to prp21-1. This suppressor, prp21-2, accumulates pre-mRNA at the non-permissive temperature, a phenotype similar to that of prp21-1. prp21-2 completely suppresses the splicing defect and restores in vivo levels of the U6 snRNA in the prp24-1 strain. Genetic analysis of the suppressor showed that prp21-2 is not a bypass suppressor of prp24-1. The suppression of prp24-1 by prp21-2 is gene specific and also allele specific with respect to both the loci. Genetic interactions with other components of the pre-spliceosome have also been studied. Our results indicate an interaction between PRP21, a component of the U2 snRNP, and PRP24, a component of the U6 snRNP. These results substantiate other data showing U2-U6 snRNA interactions.
Resumo:
By “phenotypic plasticity” we refer to the capacity of a genotype to exhibit different phenotypes, whether in the same or in different environments. We have previously demonstrated that phenotypic plasticity can improve the degree of adaptation achieved via natural selection (Behera & Nanjundiah, 1995). That result was obtained from a genetic algorithm model of haploid genotypes (idealized as one-dimensional strings of genes) evolving in a fixed environment. Here, the dynamics of evolution is examined under conditions of a cyclically varying environment. We find that the rate of evolution, as well as the extent of adaptation (as measured by mean population fitness) is lowered because of environmental cycling. The decrease is adaptation caused by a varying environment can, however, be partly or wholly compensated by an increase in the degree of plasticity that a genotype is capable of. Also, the reduction of population fitness caused by a variable environment can be partially offset by decreasing the total number of genetic loci. We conjecture that an increase in genome size may have been among the factors responsible for the evolution of phenotypic plasticity.
Resumo:
Deviations from the usual R (-6) dependence of the rate of fluorescence resonance energy transfer (FRET) on the distance between the donor and the acceptor have been a common scenario in the recent times. In this paper, we present a critical analysis of the distance dependence of FRET, and try to illustrate the non R (-6) type behaviour of the rate for the case of transfer from a localized electronic excitation on the donor, a dye molecule to three different energy acceptors with delocalized electronic excitations namely, graphene,two-dimensional semiconducting sheet and the case of such a semiconducting sheet rolled to obtain a nanotube. We use simple analytic models to understand the distance dependence in each case.
Resumo:
With the liberalisation of electricity market it has become very important to determine the participants making use of the transmission network.Transmission line usage computation requires information of generator to load contributions and the path used by various generators to meet loads and losses. In this study relative electrical distance (RED) concept is used to compute reactive power contributions from various sources like generators, switchable volt-amperes reactive(VAR) sources and line charging susceptances that are scattered throughout the network, to meet the system demands. The transmission line charge susceptances contribution to the system reactive flows and its aid extended in reducing the reactive generation at the generator buses are discussed in this paper. Reactive power transmission cost evaluation is carried out in this study. The proposed approach is also compared with other approaches viz.,proportional sharing and modified Y-bus.Detailed case studies with base case and optimised results are carried out on a sample 8-bus system. IEEE 39-bus system and a practical 72-bus system, an equivalent of Indian Southern grid are also considered for illustration and results are discussed.
Resumo:
Glaucoma, optic neuropathy with excavation in the optic nerve head and corresponding visual field defect, is one of the leading causes for blindness worldwide. However, visual disability can often be avoided or delayed if the disease is diagnosed at an early stage. Therefore, recognising the risk factors for development and progression of glaucoma may prevent further damage. The purpose of the present study was to evaluate factors associated with visual disability caused by glaucoma and the genetic features of two risk factors, exfoliation syndrome (ES) and a positive family history of glaucoma. The present study material consisted of three study groups 1) deceased glaucoma patients from the Ekenäs practice 2) glaucoma families from the Ekenäs region and 3) population based families with and without exfoliation syndrome from Kökar Island. For the retrospective study, 106 patients with open angle glaucoma (OAG) were identified. At the last visit, 17 patients were visually impaired. Blindness induced by glaucoma was found in one or both eyes in 16 patients and in both eyes in six patients. The cumulative incidence of glaucoma caused blindness for one eye was 6% at 5 years, 9% at 10 years, and 15% at 15 years from initialising the treatment. The factors associated with blindness caused by glaucoma were an advanced stage of glaucoma at diagnosis, fluctuation in intraocular pressure during treatment, the presence of exfoliation syndrome, and poor patient compliance. A cross-sectional population based study performed in 1960-1962 on Kökar Island and the same population was followed until 2002. In total 965 subjects (530 over 50 years) have been examined at least once. The prevalence of exfoliation syndrome (ES) was 18% among subjects older than 50 years. Seventy-five of all 78 ES-positives belonged to the same extended pedigree. According to the segregation and family analysis, exfoliation syndrome seemed to be inherited as an autosomal dominant trait with reduced penetrance. The penetrance was more reduced for males, but the risk for glaucoma was higher in males than in females. To find the gene or genes associated with exfoliation syndrome, a genome wide scan was performed for 64 members (28 ES affected and 36 controls) of the Kökar pedigree. A promising result was found: the highest two-point LOD score of 3.45 (θ=0.04) in chromosome18q12.1-21.33. The presence of mutations in glaucoma genes TIGR/MYOC (myocilin) and OPTN (optineurin) was analysed in eight glaucoma families from the Ekenäs region. An inheritance pattern resembling autosomal dominant mode was detected in all these families. Primary open angle glaucoma or exfoliation glaucoma was found in 35% of 136 family members and 28% were suspected to have glaucoma. No mutations were detected in these families.
Resumo:
Multiple sclerosis (MS) is an immune-mediated demyelinating disorder of the central nervous system (CNS) affecting 0.1-0.2% of Northern European descent population. MS is considered to be a multifactorial disease, both environment and genetics play a role in its pathogenesis. Despite several decades of intense research, the etiological and pathogenic mechanisms underlying MS remain still largely unknown and no curative treatment exists. The genetic architecture underlying MS is complex with multiple genes involved. The strongest and the best characterized predisposing genetic factors for MS are located, as in other immune-mediated diseases, in the major histocompatibility complex (MHC) on chromosome 6. In humans MHC is called human leukocyte antigen (HLA). Alleles of the HLA locus have been found to associate strongly with MS and remained for many years the only consistently replicable genetic associations. However, recently other genes located outside the MHC region have been proposed as strong candidates for susceptibility to MS in several studies. In this thesis a new genetic locus located on chromosome 7q32, interferon regulatory factor 5 (IRF5), was identified in the susceptibility to MS. In particular, we found that common variation of the gene was associated with the disease in three different populations, Spanish, Swedish and Finnish. We also suggested a possible functional role for one of the risk alleles with impact on the expression of the IRF5 locus. Previous studies have pointed out a possible role played by chromosome 2q33 in the susceptibility to MS and other autoimmune disorders. The work described here also investigated the involvement of this chromosomal region in MS predisposition. After the detection of genetic association with 2q33 (article-1), we extended our analysis through fine-scale single nucleotide polymorphism (SNP) mapping to define further the contribution of this genomic area to disease pathogenesis (article-4). We found a trend (p=0.04) for association to MS with an intronic SNP located in the inducible T-cell co-stimulator (ICOS) gene, an important player in the co-stimulatory pathway of the immune system. Expression analysis of ICOS revealed a novel, previously uncharacterized, alternatively spliced isoform, lacking the extracellular domain that is needed for ligand binding. The stability of the newly-identified transcript variant and its subcellular localization were analyzed. These studies indicated that the novel isoform is stable and shows different subcellular localization as compared to full-length ICOS. The novel isoform might have a regulatory function, but further studies are required to elucidate its function. Chromosome 19q13 has been previously suggested as one of the genomic areas involved in MS predisposition. In several populations, suggestive linkage signals between MS predisposition and 19q13 have been obtained. Here, we analysed the role of allelic variation in 19q13 by family based association analysis in 782 MS families collected from Finland. In this dataset, we were not able to detect any statistically significant associations, although several previously suggested markers were included to the analysis. Replication of the previous findings on the basis of linkage disequilibrium between marker allele and disease/risk allele appears notoriously difficult because of limitations such as allelic heterogeneity. Re-sequencing based approaches may be required for elucidating the role of chromosome 19q13 with MS. This thesis has resulted in the identification of a new MS susceptibility locus (IRF5) previously associated with other inflammatory or autoimmune disorders, such as SLE. IRF5 is one of the mediators of interferons biological function. In addition to providing new insight in the possible pathogenetic pathway of the disease, this finding suggests that there might be common mechanisms between different immune-mediated disorders. Furthermore the work presented here has uncovered a novel isoform of ICOS, which may play a role in regulatory mechanisms of ICOS, an important mediator of lymphocyte activation. Further work is required to uncover its functions and possible involvement of the ICOS locus in MS susceptibility.
Resumo:
Background The Pacific Oceania region was one of the last regions of the world to be settled via human migration. Here we outline a settlement of this region that has given rise to a uniquely admixed population. The current Norfolk Island population has arisen from a small number of founders with mixed Caucasian and Polynesian ancestry, descendants of a famous historical event. The ‘Mutiny on the Bounty’ has been told in history books, songs and the big screen, but recently this story can be portrayed through comprehensive molecular genetics. Written history details betrayal and murder leading to the founding of Pitcairn Island by European mutineers and the Polynesian women who left Tahiti with them. Investigation of detailed genealogical records supports historical accounts. Findings Using genetics, we show distinct maternal Polynesian mitochondrial lineages in the present day population, as well as a European centric Y-chromosome phylogeny. These results comprehensively characterise the unique gender-biased admixture of this genetic isolate and further support the historical records relating to Norfolk Island. Conclusions Our results significantly refine previous population genetic studies investigating Polynesian versus Caucasian diversity in the Norfolk Island population and add information that is beneficial to future disease and gene mapping studies.
Resumo:
The methylenetetrahydrofolate reductase (MTHFR) gene codes for the MTHFR enzyme which plays a key role in the pathway of folate and methionine metabolism. Polymorphisms of genes in this pathway affect its regulation and have been linked to lymphoma. In this study we examined whether we could detect an association between two common non-synonomous MTHFR polymorphisms, 677C>T (rs1801133) and 1298A>C (rs1801131), and susceptibility to non-Hodgkin lymphoma (NHL) in an Australian case-control cohort. We found no significant differences between genotype or allele frequencies for either polymorphisms between lymphoma cases and controls. We also explored whether epigenetic modification of MTHFR, specifically DNA methylation of a CpG island in the MTHFR promoter region, is associated with NHL using blood samples from patients. No difference in methylation levels was detected between the case and control samples suggesting that although hypermethylation of MTHFR has been reported in tumour tissues, particularly in the diffuse large B-cell lymphoma subtype of NHL, methylation of this MTHFR promoter CpG island is not a suitable epigenetic biomarker for NHL diagnosis or prognosis in peripheral blood samples. Further studies into epigenetic variants could focus on genes that are robustly associated with NHL susceptibility.
Resumo:
Background Located in the Pacific Ocean between Australia and New Zealand, the unique population isolate of Norfolk Island has been shown to exhibit increased prevalence of metabolic disorders (type-2 diabetes, cardiovascular disease) compared to mainland Australia. We investigated this well-established genetic isolate, utilising its unique genomic structure to increase the ability to detect related genetic markers. A pedigree-based genome-wide association study of 16 routinely collected blood-based clinical traits in 382 Norfolk Island individuals was performed. Results A striking association peak was located at chromosome 2q37.1 for both total bilirubin and direct bilirubin, with 29 SNPs reaching statistical significance (P < 1.84 × 10−7). Strong linkage disequilibrium was observed across a 200 kb region spanning the UDP-glucuronosyltransferase family, including UGT1A1, an enzyme known to metabolise bilirubin. Given the epidemiological literature suggesting negative association between CVD-risk and serum bilirubin we further explored potential associations using stepwise multivariate regression, revealing significant association between direct bilirubin concentration and type-2 diabetes risk. In the Norfolk Island cohort increased direct bilirubin was associated with a 28 % reduction in type-2 diabetes risk (OR: 0.72, 95 % CI: 0.57-0.91, P = 0.005). When adjusted for genotypic effects the overall model was validated, with the adjusted model predicting a 30 % reduction in type-2 diabetes risk with increasing direct bilirubin concentrations (OR: 0.70, 95 % CI: 0.53-0.89, P = 0.0001). Conclusions In summary, a pedigree-based GWAS of blood-based clinical traits in the Norfolk Island population has identified variants within the UDPGT family directly associated with serum bilirubin levels, which is in turn implicated with reduced risk of developing type-2 diabetes within this population.
Resumo:
Polygenic profiling has been proposed for elite endurance performance, using an additive model determining the proportion of optimal alleles in endurance athletes. To investigate this model’s utility for elite triathletes, we genotyped seven polymorphisms previously associated with an endurance polygenic profile (ACE Ins/Del, ACTN3 Arg577Ter, AMPD1 Gln12Ter, CKMM 1170bp/985+185bp, HFE His63Asp, GDF8 Lys153Arg and PPARGC1A Gly482Ser) in a cohort of 196 elite athletes who participated in the 2008 Kona Ironman championship triathlon. Mean performance time (PT) was not significantly different in individual marker analysis. Age, sex, and continent of origin had a significant influence on PT and were adjusted for. Only the AMPD1 endurance-optimal Gln allele was found to be significantly associated with an improvement in PT (model p=5.79 x 10-17, AMPD1 genotype p=0.01). Individual genotypes were combined into a total genotype score (TGS); TGS distribution ranged from 28.6 to 92.9, concordant with prior studies in endurance athletes (mean±SD: 60.75±12.95). TGS distribution was shifted toward higher TGS in the top 10% of athletes, though the mean TGS was not significantly different (p=0.164) and not significantly associated with PT even when adjusted for age, sex, and origin. Receiver operating characteristic curve analysis determined that TGS alone could not significantly predict athlete finishing time with discriminating sensitivity and specificity for three outcomes (less than median PT, less than mean PT, or in the top 10%), though models with the age, sex, continent of origin, and either TGS or AMPD1 genotype could. These results suggest three things: that more sophisticated genetic models may be necessary to accurately predict athlete finishing time in endurance events; that non-genetic factors such as training are hugely influential and should be included in genetic analyses to prevent confounding; and that large collaborations may be necessary to obtain sufficient sample sizes for powerful and complex analyses of endurance performance.