911 resultados para Generalized Concatenated Codes
Resumo:
This paper presents a viscous three-dimensional simulations coupling Euler and boundary layer codes for calculating flows over arbitrary surfaces. The governing equations are written in a general non orthogonal coordinate system. The Levy-Lees transformation generalized to three-dimensional flows is utilized. The inviscid properties are obtained from the Euler equations using the Beam and Warming implicit approximate factorization scheme. The resulting equations are discretized and approximated by a two-point fmitedifference numerical scheme. The code developed is validated and applied to the simulation of the flowfield over aerospace vehicle configurations. The results present good correlation with the available data.
Resumo:
This paper introduces the concept of special subsets when applied to generator matrices based on lattices and cosets as presented by Calder-bank and Sloane. By using the special subsets we propose a non exhaustive code search for optimum codes. Although non exhaustive, the search always results in optimum codes for given (k1, V, Λ/Λ′). Tables with binary and ternary optimum codes to partitions of lattices with 8, 9 e 16 cosets, were obtained.
Resumo:
Recently, Basseto and Griguolo1 did a perturbative quantization of what they called a generalized chiral Schwinger model. As a consequence of the kind of quantization adopted, some gauge-dependent masses raised in the model. On the other hand, we discussed the possibility of introducing a generalized Wess-Zumino term,2 where such gauge-dependent masses did appear. Here we intend to show that one can construct a non-anomalous version of a model which include that, presented by Basseto and Griguolo as a particular case, by adding to it a generalized Wess-Zumino term, as proposed in Ref. 2. So we conclude that it is possible to construct a gauge-invariant extension of the model quoted in Ref. 1, and this can be done through a Wess-Zumino term of the type proposed in Ref. 2.
Resumo:
We have compared the recently introduced generalized simulated annealing (GSA) with conventional simulated annealing (CSA). GSA was tested as a tool to obtain the ground-state geometry of molecules. We have used selected silicon clusters (Sin, n=4-7,10) as test cases. Total energies were calculated through tight-binding molecular dynamics. We have found that the replacement of Boltzmann statistics (CSA) by Tsallis's statistics (GSA) has the potential to speed up optimizations with no loss of accuracy. Next, we applied the GSA method to study the ground-state geometry of a 20-atom silicon cluster. We found an original geometry, apparently lower in energy than those previously described in the literature.
Resumo:
In the present paper, we discuss a generalized theory of electrical characteristics for amorphous semiconductor (or insulator) Schottky barriers, considering: (i) surface states, (ii) doping impurity states at a single energy level and (iii) energetically distributed bulk impurity states. We also consider a thin oxide layer (≈10 Å) between metal and semiconductor. We develop current versus applied potential characteristics considering the variation of the Fermi level very close to contact inside the semiconductor and decrease in barrier height due to the image force effect as well as potential fall on the oxide layer. Finally, we discuss the importance of each parameter, i.e. surface states, distributed impurity states, doping impurity states, thickness of oxide layer etc. on the log I versus applied potential characteristics. The present theory is also applicable for intimate contact, i.e. metal-semiconductor contact, crystalline material structures or for Schottky barriers in insulators or polymers.
Resumo:
We give the correct prescriptions for the terms involving ∂ -1 xδ(x - y), in the Hamiltonian structures of the AKNS and DNLS systems, necessary for the Jacobi identities to hold. We establish that the sl(2) and sl(3) AKNS systems are tri-Hamiltonians and construct two compatible Hamiltonian structures for the sl(n) AKNS system. We give a method for the derivation of the recursion operator for the sl(n + 1) DNLS system, and apply it explicitly to the sl(2) case, showing that such a system is tri-Hamiltonian. © 1998 Elsevier Science B.V.
Resumo:
BCH codes over arbitrary finite commutative rings with identity are derived in terms of their locator vector. The derivation is based on the factorization of xs -1 over the unit ring of an appropriate extension of the finite ring. We present an efficient decoding procedure, based on the modified Berlekamp-Massey algorithm, for these codes. The code construction and the decoding procedures are very similar to the BCH codes over finite integer rings. © 1999 Elsevier B.V. All rights reserved.
Resumo:
Generalized nucleon polarizabilities for virtual photons can be defined in terms of electroproduction cross sections as function of the 4-momentum transfer Q2. In particular, the sum of the generalized electric and magnetic polarizabilities ∑ = α + β and the spin polarizability γ can be expressed by virtual photon absorption cross sections integrated over the excitation energy. These quantities have been calculated within the framework of the recently developed unitary isobar model for pion photo- and electroproduction on the proton, which describes the available experimental data up to an excitation energy of about 1 GeV. Our results have been compared to the predictions of chiral perturbation theory. © 1999 Elsevier Science B.V. All rights reserved.
Resumo:
One common problem in all basic techniques of knowledge representation is the handling of the trade-off between precision of inferences and resource constraints, such as time and memory. Michalski and Winston (1986) suggested the Censored Production Rule (CPR) as an underlying representation and computational mechanism to enable logic based systems to exhibit variable precision in which certainty varies while specificity stays constant. As an extension of CPR, the Hierarchical Censored Production Rules (HCPRs) system of knowledge representation, proposed by Bharadwaj & Jain (1992), exhibits both variable certainty as well as variable specificity and offers mechanisms for handling the trade-off between the two. An HCPR has the form: Decision If(preconditions) Unless(censor) Generality(general_information) Specificity(specific_information). As an attempt towards evolving a generalized knowledge representation, an Extended Hierarchical Censored Production Rules (EHCPRs) system is suggested in this paper. With the inclusion of new operators, an Extended Hierarchical Censored Production Rule (EHCPR) takes the general form: Concept If (Preconditions) Unless (Exceptions) Generality (General-Concept) Specificity (Specific Concepts) Has_part (default: structural-parts) Has_property (default:characteristic-properties) Has_instance (instances). How semantic networks and frames are represented in terms of an EHCPRs is shown. Multiple inheritance, inheritance with and without cancellation, recognition with partial match, and a few default logic problems are shown to be tackled efficiently in the proposed system.
Resumo:
We propose new classes of linear codes over integer rings of quadratic extensions of Q, the field of rational numbers. The codes are considered with respect to a Mannheim metric, which is a Manhattan metric modulo a two-dimensional (2-D) grid. In particular, codes over Gaussian integers and Eisenstein-Jacobi integers are extensively studied. Decoding algorithms are proposed for these codes when up to two coordinates of a transmitted code vector are affected by errors of arbitrary Mannheim weight. Moreover, we show that the proposed codes are maximum-distance separable (MDS), with respect to the Hamming distance. The practical interest in such Mannheim-metric codes is their use in coded modulation schemes based on quadrature amplitude modulation (QAM)-type constellations, for which neither the Hamming nor the Lee metric is appropriate.
Resumo:
In Colombeau's theory, given an open subset Ω of ℝn, there is a differential algebra G(Ω) of generalized functions which contains in a natural way the space D′(Ω) of distributions as a vector subspace. There is also a simpler version of the algebra G,(Ω). Although this subalgebra does not contain, in canonical way, the space D′(Ω) is enough for most applications. This work is developed in the simplified generalized functions framework. In several applications it is necessary to compute higher intrinsic derivatives of generalized functions, and since these derivatives are multilinear maps, it is necessary to define the space of generalized functions in Banach spaces. In this article we introduce the composite function for a special class of generalized mappings (defined in open subsets of Banach spaces with values in Banach spaces) and we compute the higher intrinsic derivative of this composite function.