937 resultados para Function prediction
Resumo:
The cis-regulatory regions on DNA serve as binding sites for proteins such as transcription factors and RNA polymerase. The combinatorial interaction of these proteins plays a crucial role in transcription initiation, which is an important point of control in the regulation of gene expression. We present here an analysis of the performance of an in silico method for predicting cis-regulatory regions in the plant genomes of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) on the basis of free energy of DNA melting. For protein-coding genes, we achieve recall and precision of 96% and 42% for Arabidopsis and 97% and 31% for rice, respectively. For noncoding RNA genes, the program gives recall and precision of 94% and 75% for Arabidopsis and 95% and 90% for rice, respectively. Moreover, 96% of the false-positive predictions were located in noncoding regions of primary transcripts, out of which 20% were found in the first intron alone, indicating possible regulatory roles. The predictions for orthologous genes from the two genomes showed a good correlation with respect to prediction scores and promoter organization. Comparison of our results with an existing program for promoter prediction in plant genomes indicates that our method shows improved prediction capability.
Resumo:
A vast amount of literature has accumulated on the characterization of DNA methyltransferases. The HhaI DNA methyltransferase, a C5-cytosine methyltransferase, has been the subject of investigation for the last 2 decades. Biochemical and kinetic characterization have led to an understanding of the catalytic and kinetic mechanism of the methyltransfer reaction. The HhaI methyltransferase has also been subjected to extensive structural analysis, with the availability of 12 structures with or without a cofactor and a variety of DNA substrates. The mechanism of base flipping, first described for the HhaI methyltransferase, is conserved among all DNA methyltransferases and is also found to occur in numerous DNA repair enzymes. Studies with other methyltransferase reveal a significant structural and functional similarity among different types of methyltransferases. This review aims to summarize the available information on the HhaI DNA methyltransferase.
Resumo:
Fetal lung and liver tissues were examined by ultrasound in 240 subjects during 24 to 38 weeks of gestational age in order to investigate the feasibility of predicting the maturity of the lung from the textural features of sonograms. A region of interest of 64 X 64 pixels is used for extracting textural features. Since the histological properties of the liver are claimed to remain constant with respect to gestational age, features obtained from the lung region are compared with those from liver. Though the mean values of some of the features show a specific trend with respect to gestation age, the variance is too high to guarantee definite prediction of the gestational age. Thus, we restricted our purview to an investigation into the feasibility of fetal lung maturity prediction using statistical textural features. Out of 64 features extracted, those features that are correlated with gestation age and less computationally intensive are selected. The results of our study show that the sonographic features hold some promise in determining whether the fetal lung is mature or immature.
Resumo:
An entirely different approach for localisation of winding deformation based on terminal measurements is presented. Within the context of this study, winding deformation means, a discrete and specific change externally imposed at a particular position on the winding. The proposed method is based on pre-computing and plotting the complex network-function loci e.g. driving-point impedance (DPI)] at a selected frequency, for a meaningful range of values for each element (increasing and decreasing) of the ladder network which represents the winding. This loci diagram is called the nomogram. After introducing a discrete change, amplitude and phase of DPI are measured. By plotting this single measurement on the nomogram, it is possible to estimate the location and identify the extent of change. In contrast to the existing approach, the proposed method is fast, non-iterative and yields reasonably good localisation. Experimental results for actual transformer windings (interleaved and continuous disc) are presented.
Resumo:
In engineering design, the end goal is the creation of an artifact, product, system, or process that fulfills some functional requirements at some desired level of performance. As such, knowledge of functionality is essential in a wide variety of tasks in engineering activities, including modeling, generation, modification, visualization, explanation, evaluation, diagnosis, and repair of these artifacts and processes. A formal representation of functionality is essential for supporting any of these activities on computers. The goal of Parts 1 and 2 of this Special Issue is to bring together the state of knowledge of representing functionality in engineering applications from both the engineering and the artificial intelligence (AI) research communities.
Resumo:
In Saccharomyces cerevisiae, Prp17p is required for the efficient completion of the second step of pre-mRNA splicing. The function and interacting factors for this protein have not been elucidated. We have performed a mutational analysis of yPrp17p to identify protein domains critical for function. A series of deletions were made throughout the region spanning the N-terminal 158 amino acids of the protein, which do not contain any identified structural motifs. The C-terminal portion (amino acids 160–455) contains a WD domain containing seven WD repeats. We determined that a minimal functional Prp17p consists of the WD domain and 40 amino acids N-terminal to it. We generated a three-dimensional model of the WD repeats in Prp17p based on the crystal structure of the [beta]-transducin WD domain. This model was used to identify potentially important amino acids for in vivo functional characterization. Through analysis of mutations in four different loops of Prp17p that lie between [beta] strands in the WD repeats, we have identified four amino acids, 235TETG238, that are critical for function. These amino acids are predicted to be surface exposed and may be involved in interactions that are important for splicing. Temperature-sensitive prp17 alleles with mutations of these four amino acids are defective for the second step of splicing and are synthetically lethal with a U5 snRNA loop I mutation, which is also required for the second step of splicing. These data reinforce the functional significance of this region within the WD domain of Prp17p in the second step of splicing.
Resumo:
Uncertainties in complex dynamic systems play an important role in the prediction of a dynamic response in the mid- and high-frequency ranges. For distributed parameter systems, parametric uncertainties can be represented by random fields leading to stochastic partial differential equations. Over the past two decades, the spectral stochastic finite-element method has been developed to discretize the random fields and solve such problems. On the other hand, for deterministic distributed parameter linear dynamic systems, the spectral finite-element method has been developed to efficiently solve the problem in the frequency domain. In spite of the fact that both approaches use spectral decomposition (one for the random fields and the other for the dynamic displacement fields), very little overlap between them has been reported in literature. In this paper, these two spectral techniques are unified with the aim that the unified approach would outperform any of the spectral methods considered on their own. An exponential autocorrelation function for the random fields, a frequency-dependent stochastic element stiffness, and mass matrices are derived for the axial and bending vibration of rods. Closed-form exact expressions are derived by using the Karhunen-Loève expansion. Numerical examples are given to illustrate the unified spectral approach.
Resumo:
This paper elucidates the methodology of applying artificial neural network model (ANNM) to predict the percent swell of calcitic soil in sulphuric acid solutions, a complex phenomenon involving many parameters. Swell data required for modelling is experimentally obtained using conventional oedometer tests under nominal surcharge. The phases in ANN include optimal design of architecture, operation and training of architecture. The designed optimal neural model (3-5-1) is a fully connected three layer feed forward network with symmetric sigmoid activation function and trained by the back propagation algorithm to minimize a quadratic error criterion.The used model requires parameters such as duration of interaction, calcite mineral content and acid concentration for prediction of swell. The observed strong correlation coefficient (R2 = 0.9979) between the values determined by the experiment and predicted using the developed model demonstrates that the network can provide answers to complex problems in geotechnical engineering.
Resumo:
The applicability of Artificial Neural Networks for predicting the stress-strain response of jointed rocks at varied confining pressures, strength properties and joint properties (frequency, orientation and strength of joints) has been studied in the present paper. The database is formed from the triaxial compression tests on different jointed rocks with different confining pressures and different joint properties reported by various researchers. This input data covers a wide range of rock strengths, varying from very soft to very hard. The network was trained using a 3 layered network with feed forward back propagation algorithm. About 85% of the data was used for training and remaining15% for testing the predicting capabilities of the network. Results from the analyses were very encouraging and demonstrated that the neural network approach is efficient in capturing the complex stress-strain behaviour of jointed rocks. A single neural network is demonstrated to be capable of predicting the stress-strain response of different rocks, whose intact strength vary from 11.32 MPa to 123 MPa and spacing of joints vary from 10 cm to 100 cm for confining pressures ranging from 0 to 13.8 MPa.
Resumo:
In this paper, reduced level of rock at Bangalore, India is arrived from the 652 boreholes data in the area covering 220 sq.km. In the context of prediction of reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth, ordinary kriging and Support Vector Machine (SVM) models have been developed. In ordinary kriging, the knowledge of the semivariogram of the reduced level of rock from 652 points in Bangalore is used to predict the reduced level of rock at any point in the subsurface of Bangalore, where field measurements are not available. A cross validation (Q1 and Q2) analysis is also done for the developed ordinary kriging model. The SVM is a novel type of learning machine based on statistical learning theory, uses regression technique by introducing e-insensitive loss function has been used to predict the reduced level of rock from a large set of data. A comparison between ordinary kriging and SVM model demonstrates that the SVM is superior to ordinary kriging in predicting rock depth.