965 resultados para Fully-Implicit Method
Resumo:
A plane strain elastic interaction analysis of a strip footing resting on a reinforced soil bed has been made by using a combined analytical and finite element method (FEM). In this approach the stiffness matrix for the footing has been obtained using the FEM, For the reinforced soil bed (halfplane) the stiffness matrix has been obtained using an analytical solution. For the latter, the reinforced zone has been idealised as (i) an equivalent orthotropic infinite strip (composite approach) and (ii) a multilayered system (discrete approach). In the analysis, the interface between the strip footing and reinforced halfplane has been assumed as (i) frictionless and (ii) fully bonded. The contact pressure distribution and the settlement reduction have been given for different depths of footing and scheme of reinforcement in soil. The load-deformation behaviour of the reinforced soil obtained using the above modelling has been compared with some available analytical and model test results. The equivalent orthotropic approach proposed in this paper is easy to program and is shown to predict the reinforcing effects reasonably well.
Resumo:
Careful study of various aspects presented in the note reveals basic fallacies in the concept and final conclusions.The Authors claim to have presented a new method of determining C-v. However, the note does not contain a new method. In fact, the method proposed is an attempt to generate settlement vs. time data using only two values of (t,8). The Authors have used a rectangular hyperbola method to determine C-v from the predicated 8- t data. In this context, the title of the paper itself is misleading and questionable. The Authors have compared C-v values predicated with measured values, both of them being the results of the rectangular hyperbola method.
Resumo:
Reaction of 6-acetoxy-5-bromomethylquinoline (1c) and 2-bromomethyl-4-(2'-pyridyl)phenyl acetate (2b) with tetrachlorocatechol in acetone in the presence of anhydrous potassium carbonate resulted in the formation of diastereomeric products 3c, 3d, 4e and 4f.
Resumo:
We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.
Resumo:
Using a mixed-type Fourier transform of a general form in the case of water of infinite depth and the method of eigenfunction expansion in the case of water of finite depth, several boundary-value problems involving the propagation and scattering of time harmonic surface water waves by vertical porous walls have been fully investigated, taking into account the effect of surface tension also. Known results are recovered either directly or as particular cases of the general problems under consideration.
Resumo:
Adopting a two-temperature and two-velocity model, appropriate to a bidisperse porous medium (BDPM) proposed by Nield and Kuznetsov (2008), the classical steady, mixed convection boundary layer flow about a horizontal, isothermal circular cylinder embedded in a porous medium has been theoretically studied in this article. It is shown that the boundary layer analysis leads to expressions for the flow and heat transfer characteristics in terms of an inter-phase momentum parameter, a thermal diffusivity ratio, a thermal conductivity ratio, a permeability ratio, a modified thermal capacity ratio, and a buoyancy or mixed convection parameter. The transformed partial differential equations governing the flow and heat transfer in the f-phase (the macro-pores) and the p-phase (the remainder of the structure) are solved numerically using a very efficient implicit finite-difference technique known as Keller-box method. A good agreement is observed between the present results and those known from the open literature in the special case of a traditional Darcy formulation (monodisperse system).
Resumo:
Taylor (1948) suggested the method for determination of the settlement, d, corresponding to 90% consolidation utilizing the characteristics of the degree of consolidation, U, versus the square root of the time factor, square root of T, plot. Based on the properties of the slope of U versus square root of T curve, a new method is proposed to determine d corresponding to any U above 70% consolidation for evaluation of the coefficient of consolidation, Cn. The effects of the secondary consolidation on the Cn value at different percentages of consolidation can be studied. Cn, closer to the field values, can be determined in less time as compared to Taylor's method. At any U in between 75 and 95% consolidation, Cn(U) due to the new method lies in between Taylor's Cn and Casagrande's Cn.
Resumo:
Lasers are very efficient in heating localized regions and hence they find a wide application in surface treatment processes. The surface of a material can be selectively modified to give superior wear and corrosion resistance. In laser surface-melting and welding problems, the high temperature gradient prevailing in the free surface induces a surface-tension gradient which is the dominant driving force for convection (known as thermo-capillary or Marangoni convection). It has been reported that the surface-tension driven convection plays a dominant role in determining the melt pool shape. In most of the earlier works on laser-melting and related problems, the finite difference method (FDM) has been used to solve the Navier Stokes equations [1]. Since the Reynolds number is quite high in these cases, upwinding has been used. Though upwinding gives physically realistic solutions even on a coarse grid, the results are inaccurate. McLay and Carey have solved the thermo-capillary flow in welding problems by an implicit finite element method [2]. They used the conventional Galerkin finite element method (FEM) which requires that the pressure be interpolated by one order lower than velocity (mixed interpolation). This restricts the choice of elements to certain higher order elements which need numerical integration for evaluation of element matrices. The implicit algorithm yields a system of nonlinear, unsymmetric equations which are not positive definite. Computations would be possible only with large mainframe computers.Sluzalec [3] has modeled the pulsed laser-melting problem by an explicit method (FEM). He has used the six-node triangular element with mixed interpolation. Since he has considered the buoyancy induced flow only, the velocity values are small. In the present work, an equal order explicit FEM is used to compute the thermo-capillary flow in the laser surface-melting problem. As this method permits equal order interpolation, there is no restriction in the choice of elements. Even linear elements such as the three-node triangular elements can be used. As the governing equations are solved in a sequential manner, the computer memory requirement is less. The finite element formulation is discussed in this paper along with typical numerical results.
Resumo:
A rapid, highly selective and simple method has been developed for the quantitative determination of pyro-, tri- and orthophosphates. The method is based on the formation of a solid complex of bis(ethylenediamine)cobalt(III) species with pyrophosphate at pH 4.2-4.3, with triphosphate at pH 2.0-2.1 and with orthophosphate at pH 8.2-8.6. The proposed method for pyro- and triphosphates differs from the available method, which is based on the formation of an adduct with tris(ethylenediamine)cobalt(III) species. The complexes have the composition [Co(en)(2)HP2O7]4H(2)O and [Co(en)(2)H2P3O10]2H(2)O, respectively. The precipitation is instantaneous and quantitative under the recommended optimum conditions giving 99.5% gravimetric yield in both cases. There is no interferences from orthophosphate, trimetaphosphate and pyrophosphate species in the triphosphate estimation up to 5% of each component. The efficacy of the method has been established by determining pyrophosphate and triphosphate contents in various matrices. In the case of orthophosphate, the proposed method differs from the available methods such as ammonium phosphomolybdate, vanadophosphomolybdate and quinoline phosphomolybdate, which are based on the formation of a precipitate, followed by either titrimetry or gravimetry. The precipitation is instantaneous and the method is simple. Under the recommended pH and other reaction conditions, gravimetric yields of 99.6-100% are obtainable. The method is applicable to orthophosphoric acid and a variety of phosphate salts.
Resumo:
A one step, clean and efficient, conversion of arylaldehydes, ketones and ketals into the corresponding hydrocarbon using ionic hydrogenation conditions employing sodium cyanoborohydride in the presence of two to three equivalents of BF3. OEt(2) is described.
Resumo:
Many websites presently provide the facility for users to rate items quality based on user opinion. These ratings are used later to produce item reputation scores. The majority of websites apply the mean method to aggregate user ratings. This method is very simple and is not considered as an accurate aggregator. Many methods have been proposed to make aggregators produce more accurate reputation scores. In the majority of proposed methods the authors use extra information about the rating providers or about the context (e.g. time) in which the rating was given. However, this information is not available all the time. In such cases these methods produce reputation scores using the mean method or other alternative simple methods. In this paper, we propose a novel reputation model that generates more accurate item reputation scores based on collected ratings only. Our proposed model embeds statistical data, previously disregarded, of a given rating dataset in order to enhance the accuracy of the generated reputation scores. In more detail, we use the Beta distribution to produce weights for ratings and aggregate ratings using the weighted mean method. Experiments show that the proposed model exhibits performance superior to that of current state-of-the-art models.
Resumo:
Time-frequency analysis of various simulated and experimental signals due to elastic wave scattering from damage are performed using wavelet transform (WT) and Hilbert-Huang transform (HHT) and their performances are compared in context of quantifying the damages. Spectral finite element method is employed for numerical simulation of wave scattering. An analytical study is carried out to study the effects of higher-order damage parameters on the reflected wave from a damage. Based on this study, error bounds are computed for the signals in the spectral and also on the time-frequency domains. It is shown how such an error bound can provide all estimate of error in the modelling of wave propagation in structure with damage. Measures of damage based on WT and HHT is derived to quantify the damage information hidden in the signal. The aim of this study is to obtain detailed insights into the problem of (1) identifying localised damages (2) dispersion of multifrequency non-stationary signals after they interact with various types of damage and (3) quantifying the damages. Sensitivity analysis of the signal due to scattered wave based on time-frequency representation helps to correlate the variation of damage index measures with respect to the damage parameters like damage size and material degradation factors.
Resumo:
Arc discharge between graphite electrodes under a relatively high pressure of hydrogen yields graphene flakes generally containing 2-4 layers in the inner wall region of the arc chamber. The graphene flakes so obtained have been characterized by X-ray diffraction, atomic force microscopy, transmission electron microscopy, and Raman spectroscopy. The method is eminently suited to dope graphene with boron and nitrogen by carrying out arc discharge in the presence of diborane and pyridine respectively.
Resumo:
It is shown that prop-2-ynyl esters are useful protecting groups for carboxylic acids and that they are selectively deprotected in the presence of other esters on treatment with tetrathiomolybdate under mild conditions.
Resumo:
Interfacing carbon nanodots (C-dots) with graphitic carbon nitride (g-C3N4) produces a metal-free system that has recently demonstrated significant enhancement of photo-catalytic performance for water splitting into hydrogen [Science, 2015, 347, 970–974]. However, the underlying photo-catalytic mechanism is not fully established. Herein, we have carried out density functional theory (DFT) calculations to study the interactions between g-C3N4 and trigonal/hexagonal shaped C-dots. We find that hybrid C-dots/g-C3N4 can form a type-II van der Waals heterojunction, leading to significant reduction of band gap. The C-dot decorated g-C3N4 enhances the separation of photogenerated electron and hole pairs and the composite's visible light response. Interestingly, the band alignment of C-dots and g-C3N4 calculated by the hybrid functional method indicates that C-dots act as a spectral sensitizer in hybrid C-dots/g-C3N4 for water splitting. Our results offer new theoretical insights into this metal-free photocatalyst for water splitting.