978 resultados para Flexural properties
Resumo:
In recent times, there has been an ever-growing need for polymer-based multifunctional materials for electronic packaging applications. In this direction, epoxy-Al2O3 nanocomposites at low filler loadings can provide an excellent material option, especially from the point of view of their dielectric properties. This paper reports the dielectric characteristics for such a system, results of which are observed to be interesting, unique, and advantageous as compared to traditionally used microcomposite systems. Nanocomposites are found to display lower values of permittivity/tan delta over a wide frequency range as compared to that of unfilled epoxy. This surprising observation has been attributed to the interaction between the epoxy chains and the nanoparticles, and in this paper this phenomenon is analyzed using a dual layer interface model reported for polymer nanocomposites. As for the other dielectric properties associated with the nanocomposites, the nano-filler loading seems to have a significant effect. The dc resistivity and ac dielectric strength of the nanocomposites were observed to be lower than that of the unfilled epoxy system at the investigated filler loadings, whereas the electrical discharge resistant properties showed a significant enhancement. Further analysis of the results obtained in this paper shows that the morphology of the interface region and its characteristics decide the observed interesting dielectric behaviors.
Resumo:
Accelerated ageing studies for three composite propellant formulations, namely polystyrene (PS)/ ammonium perchlorate (AP), polymethylmethacrylate (PMMA)/AP and poly phenol formaldehyde (PPF)/AP have been carried out in the temperature range of 55-125°C. Measurements of the ultimate compression strength (Uc) and isothermal decomposition rate (TD rate) were monitored as a function of storage time and temperature. The change in Uc was found to be linearly dependent on the change in TD rate irrespective of the propellant systems. Analysis of the results further revealed that the cause of ageing for both Uc and burning rate (r) is the thermal decomposition of the propellant. The safe-life for the change in mechanical properties was found to be higher compared to the change in r for PS and PMMA based propellants.
Resumo:
The thermodynamic activity of sodium oxide (Na2O) in the Nasicon solid solution series, Na1+xZr2SixO12, has been measured in the temperature range 700�1100 K using solid state galvanic cells: Pt|CO2 + O2|Na2CO3?Na1+xZr2SixP3-xO12?(Y2O3)ZrO2?In + In2O3|Ta, Pt for 1 = ? = 2.5, and Pt?CO2 + O2?Na2CO3?ß-alumina?Na1+xZr2SixP3-xO12?Ar + O2?Pt for x = 0, 0.5, 2.5, and 3. The former cell, where the Nasicon solid solution is used as an electrolyte along with yttria-stabilized zirconia, is well suited for Nasicon compositions with high ionic conductivity. In the latter cell, ß-alumina is used as an electrolyte and the Nasicon solid solution forms an electrode. The chemical potential of Na2O is found to increase monotonically with x at constant temperature. The partial entropy of Na2O decreases continuously with x. However, the partial enthalpy exhibits a maximum at x = 2. This suggests that the binding energy is minimum at the composition where ionic conductivity and cell volume have maximum values.
Resumo:
A brief qualitative comparison is made of perovskite ABO sub 3 and layered perovskite ABO sub 3 and layered perovskite A sub 2 BO sub 4 oxides with special emphasis on the influence of geometrical factors on certain physico-chemical properties. The layered perovskite oxides are distinguished from three-dimensional oxides by a looser packing, frustration in three-dimensional interactions, more internal pressure on B--O bonds for small tolerance factors, and by different values of site-percolation thresholds. Their influence on electronic configurations of metal ions, stabilities and syntheses of compounds is discussed. The influence of increased anisotropy in layered oxides on localisation of charge carriers and in suppressing the onset of long-range ferromagnetic ordering is also discussed.
Resumo:
We have compared the total as well as fine mode aerosol optical depth (tau and tau(fine)) retrieved by Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua (2001-2005) with the equivalent parameters derived by Aerosol Robotic Network (AERONET) at Kanpur (26.45 degrees N, 80.35 degrees E), northern India. MODIS Collection 005 (C005)-derived tau(0.55) was found to be in good agreement with the AERONET measurements. The tau(fine) and eta (tau(fine)/tau) were, however, biased low significantly in most matched cases. A new set of retrieval with the use of absorbing aerosol model (SSA similar to 0.87) with increased visible surface reflectance provided improved tau and tau(fine) at Kanpur. The new derivation of eta also compares well qualitatively with an independent set of in situ measurements of accumulation mass fraction over much of the southern India. This suggests that though MODIS land algorithm has limited information to derive size properties of aerosols over land, more accurate parameterization of aerosol and surface properties within the existing C005 algorithm may improve the accuracy of size-resolved aerosol optical properties. The results presented in this paper indicate that there is a need to reconsider the surface parameterization and assumed aerosol properties in MODIS C005 algorithm over the Indian region in order to retrieve more accurate aerosol optical and size properties, which are essential to quantify the impact of human-made aerosols on climate.
Resumo:
The present paper deals with the study of the effects of electron (8 MeV) irradiation on the dielectric and ferroelectric properties of PbZrO3 thin films grown by sol-gel technique. The films were (0.62 mu m thick) subjected to electron irradiation using Microtron accelerator (delivered dose 80, 100, 120 kGy). The films were well crystallized prior to and after electron irradiation. However, local amorphization was observed after irradiation. There is an appreciable change in the dielectric constant after irradiation with different delivered doses. The dielectric loss showed significant frequency dispersion for both unirradiated and electron irradiated films. T (c) was found to shift towards higher temperature with increasing delivered dose. The effect of radiation induced increase of E >'(T) is related to an internal bias field, which is caused by radiation induced charges trapped at grain boundaries. The double butterfly loop is retained even after electron irradiation to the different delivered doses. The broader hysteresis loop seems to be related to radiation induced charges causing an enhanced space charge polarization. Radiation-induced oxygen vacancies do not change the general shape of the AFE hysteresis loop but they increase P (s) of the hysteresis at the electric field forced AFE to FE phase transition. We attribute the changes in the dielectric properties to the structural defects such as oxygen vacancies and radiation induced charges. The shift in T (C), increase in dielectric constant, broader hysteresis loop, and increase in P (r) can be related to radiation induced charges causing space charge polarization. Double butterfly and hysteresis loops were retained indicative of AFE nature of the films.
Resumo:
In the first part of the study, the selected wood and fiber properties were investigated in terms of their occurrence and variation in wood, as well as their relevance from the perspective of thermomechanical pulping process and related end-products. It was concluded that the most important factors were the fiber dimensions, juvenile wood content, and in some cases, the content of heartwood being associated with extremely dry wood with low permeability in spruce. With respect to the above properties, the following three pulpwood assortments of which pulping potential was assumed to vary were formed: wood from regeneration cuttings, first-thinnings wood, and sawmill chips. In the experimental part of the study the average wood and fiber characteristics and their variation were determined for each raw material group prior to pulping. Subsequently, each assortment - equaling about 1500 m3 roundwood - was pulped separately for a 24 h period, at constant process conditions. The properties of obtained newsgrade thermomechanical pulps were then determined. Thermomechanical pulping (TMP) from sawmill chips had the highest proportion of long fibers, smallest proportion of fines, and had generally the coarsest and longest fibers. TMP from first-thinnings wood was just the opposite, whereas that from regeneration cuttings fell in between the above two extremes. High proportion of dry heartwood in wood originating from regeneration cuttings produced a slightly elevated shives content. However, no differences were found in pulp specific energy consumption. The obtained pulp tear index was clearly best in TMP made from sawmill chips and poorest in pulp from first-thinnings wood, which had generally inferior strength properties. No dramatical differences in any of the strength properties were found between pulp from sawmill residual wood and regeneration cuttings. Pulp optical properties were superior in TMP from first-thinnings. Unexpectedly, no noticeable differences, which could be explained with fiber morphology, were found in sheet density, bulk, air permeance or roughness between the three pulps. The most important wood quality factors in this study were the fiber length, fiber cross-sectional dimensions and percentage juvenile wood. Differences found in the quality of TMP manufactured from the above spruce assortments suggest that they could be segregated and pulped separately to obtain specific product characteristics, i.e., for instance tailor-made end-products, and to minimize unnecessary variation in the raw material quality, and hence, pulp quality.
Resumo:
Anisotropic properties of the Bridgman grown layered semiconductor p-InTe were studied by analyzing the temperature dependence of electrical conductivity and Hall mobility parallel and perpendicular to the layer planes. The mobilities were μamalgamation or coproduct = 50–60 cm2V−1 sec−1 and μperpendicular = 10–15 cm2V−1sec−1 and varied as μ ≈ Tn where n = 1.43 due to impurity scattering. Pressure-induced semiconductor-metal transition occurred at about 50 kbar. The pressure coefficient of resistance was 3 times larger in the direction perpendicular to the layer plane due to the difference between inter and intra-planar bonding.
Resumo:
Excimer laser irradiation at ambient temperature has been employed to produce nanostructured silicon surfaces. Nanoindentation was used to investigate the nanomechanical properties of the deformed surfaces as a function of laser parameters, such as the angle of incidence and number of laser pulses at a fixed laser fluence of 5 J cm(-2). A single-crystal silicon 311] surface was severely damaged by laser irradiation and became nanocrystalline with an enhanced porosity. The resulting laser-treated surface consisted of nanometer-sized particles. The pore size was controlled by adjusting the angle of incidence and the number of laser pulses, and varied from nanometers to microns. The extent of nanocrystallinity was large for the surfaces irradiated at a small angle of incidence and by a high number of pulses, as confirmed by x-ray diffraction and Raman spectroscopy. The angle of incidence had a stronger effect on the structure and nanomechanical properties than the number of laser pulses.
Resumo:
The fracture properties of different concrete-concrete interfaces are determined using the Bazant's size effect model. The size effect on fracture properties are analyzed using the boundary effect model proposed by Wittmann and his co-workers. The interface properties at micro-level are analyzed through depth sensing micro-indentation and scanning electron microscopy. Geometrically similar beam specimens of different sizes having a transverse interface between two different strengths of concrete are tested under three-point bending in a closed loop servo-controlled machine with crack mouth opening displacement control. The fracture properties such as, fracture energy (G(f)), length of process zone (c(f)), brittleness number (beta), critical mode I stress intensity factor (K-ic), critical crack tip opening displacement CTODc (delta(c)), transitional ligament length to free boundary (a(j)), crack growth resistance curve and micro-hardness are determined. It is seen that the above fracture properties decrease as the difference between the compressive strength of concrete on either side of the interface increases. (C) 2010 Elsevier Ltd. All rights reserved.