977 resultados para FLUCTUATIONS
Resumo:
The electrocardiography (ECG) QT interval is influenced by fluctuations in heart rate (HR) what may lead to misinterpretation of its length. Considering that alterations in QT interval length reflect abnormalities of the ventricular repolarisation which predispose to occurrence of arrhythmias, this variable must be properly evaluated. The aim of this work is to determine which method of correcting the QT interval is the most appropriate for dogs regarding different ranges of normal HR (different breeds). Healthy adult dogs (n=130; German Shepherd, Boxer, Pit Bull Terrier, and Poodle) were submitted to ECG examination and QT intervals were determined in triplicates from the bipolar limb II lead and corrected for the effects of HR through the application of three published formulae involving quadratic, cubic or linear regression. The mean corrected QT values (QTc) obtained using the diverse formulae were significantly different (ρ<0.05), while those derived according to the equation QTcV = QT + 0.087(1- RR) were the most consistent (linear regression). QTcV values were strongly correlated (r=0.83) with the QT interval and showed a coefficient of variation of 8.37% and a 95% confidence interval of 0.22-0.23 s. Owing to its simplicity and reliability, the QTcV was considered the most appropriate to be used for the correction of QT interval in dogs.
Resumo:
In nature, many animals use body coloration to communicate with each other. For example, colorations can be used as signals between individuals of the same species, but also to recognise individuals of other species, and if they may comprise a threat or not. Many animals use protective coloration to avoid predation. The two most common strategies of protective coloration are camouflage and aposematism. Camouflaged animals have coloration that minimises detection, usually by matching colours or structures in the background. Aposematic animals, on the other hand, signal to predators that they are defended. The defence can be physical structures, such as spikes and hairs, or chemical compounds that make the animal distasteful or even deadly toxic. In order for the warning signal to be effective, the predator has to recognise it as such. Studies have shown that birds for example, that are important visual predators on insects, learn to recognise and avoid unpalatable prey faster if they contrast the background or have large internal contrasts. Typical examples of aposematic species have conspicuous colours like yellow, orange or red, often in combination with black. My thesis focuses on the appearance and function of aposematic colour patterns. Even though researchers have studied aposematism for over a century, there is still a lot we do not know about the phenomenon. For example, as it is crucial that the predators recognise a warning signal, aposematic colorations should assumingly evolve homogeneously and be selected for maximal conspicuousness. Instead, there is an extensive variation of colours and patterns among warning colorations, and it is not uncommon to find typical cryptic colours, such as green and brown in aposematic colour patterns. One hypothesis to this variation is that an aposematic coloration does not have to be maximally signalling in order to be effective, instead it is sufficient to have distinct features that can be easily distinguished from edible prey. To be maximally conspicuous is one way to achieve this, but not the only way. Another hypothesis is that aposematic prey that do not exhibit maximal conspicuousness can exploit both camouflage and aposematism in a distance-dependent fashion, by being signalling when seen close up but camouflaged at a distance. Many prey animals also make use of both strategies by shifting colour at different ecological conditions such as seasonal variations, fluctuations in food resources or between life stages. Yet another explanation for the variation may be that prey animals are usually exposed to several predator species that vary in visual perception and tolerance towards various toxins. The aim with this thesis is, by studying their functions, to understand why aposematic warning signals vary in appearance, specifically in the level of conspicuousness, and if warning coloration can be combined with camouflage. In paper I, I investigated if the colour pattern of the aposematic larva of the Apollo butterfly (Parnassius apollo) can switch function with viewing distance, and be signalling at close range but camouflaged at a distance, by comparing detection time between different colour variants and distances. The results show that the natural coloration has a dual distance-dependent function. Moreover, the study shows that an aposematic coloration does not have to be selected for maximal conspicuousness. A prey animal can optimise its coloration primarily by avoiding detection, but also by investing in a secondary defence, which presence can be signalled if detected. In paper II, I studied how easily detected the coloration of the firebug (Pyrrhocoris apterus), a typical aposematic species, is at different distances against different natural backgrounds, by comparing detection time between different colour variants. Here, I found no distance-dependent switch in function. Instead, the results show that the coloration of the firebug is selected for maximal conspicuousness. One explanation for this is that the firebug is more mobile than the butterfly larva in study I, and movement is often incompatible with efficient camouflage. In paper III, I investigated if a seasonal related colour change in the chemically defended striated shieldbug (Graphosoma lineatum) is an adaptation to optimise a protective coloration by shifting from camouflage to aposematism between two seasons. The results confirm the hypothesis that the coloration expressed in the late summer has a camouflage function, blending in with the background. Further, I investigated if the internal pattern as such increased the effectiveness of the camouflage. Again, the results are in accordance with the hypothesis, as the patterned coloration was more difficult to detect than colorations lacking an internal pattern. This study shows how an aposematic species can optimise its defence by shifting from camouflage to aposematism, but in a different fashion than studied in paper I. The aim with study IV was to study the selection on aposematic signals by identifying characteristics that are common for colorations of aposematic species, and that distinguish them from colorations of other species. I compared contrast, pattern element size and colour proportion between a group of defended species and a group of undefended species. In contrast to my prediction, the results show no significant differences between the two groups in any of the analyses. One explanation for the non-significant results could be that there are no universal characteristics common for aposematic species. Instead, the selection pressures acting on defended species vary, and therefore affect their appearance differently. Another explanation is that all defended species may not have been selected for a conspicuous aposematic warning coloration. Taken together, my thesis shows that having a conspicuous warning coloration is not the only way to be aposematic. Also, aposematism and camouflage is not two mutually exclusive opposites, as there are prey species that exploit both strategies. It is also important to understand that prey animals are exposed to various selection pressures and trade-offs that affect their appearance, and determines what an optimal coloration is for each species or environment. In conclusion, I hold that the variation among warning colorations is larger and coloration properties that have been considered as archetypically aposematic may not be as widespread and representative as previously assumed.
Resumo:
This thesis focuses on the molecular mechanisms regulating the photosynthetic electron transfer reactions upon changes in light intensity. To investigate these mechanisms, I used mutants of the model plant Arabidopsis thaliana impaired in various aspects of regulation of the photosynthetic light reactions. These included mutants of photosystem II (PSII) and light harvesting complex II (LHCII) phosphorylation (stn7 and stn8), mutants of energy-dependent non-photochemical quenching (NPQ) (npq1 and npq4) and of regulation of photosynthetic electron transfer (pgr5). All of these processes have been extensively investigated during the past decades, mainly on plants growing under steady-state conditions, and therefore many aspects of acclimation processes may have been neglected. In this study, plants were grown under fluctuating light, i.e. the alternation of low and high intensities of light, in order to maximally challenge the photosynthetic regulatory mechanisms. In pgr5 and stn7 mutants, the growth in fluctuating light condition mainly damaged PSI while PSII was rather unaffected. It is shown that the PGR5 protein regulates the linear electron transfer: it is essential for the induction of transthylakoid ΔpH that, in turn, activates energy-dependent NPQ and downregulates the activity of cytochrome b6f. This regulation was shown to be essential for the photoprotection of PSI under fluctuations in light intensity. The stn7 mutants were able to acclimate under constant growth light conditions by modulating the PSII/PSI ratio, while under fluctuating growth light they failed in implementing this acclimation strategy. LHCII phosphorylation ensures the balance of the excitation energy distribution between PSII and PSI by increasing the probability for excitons to be trapped by PSI. LHCII can be phosphorylated over all of the thylakoid membrane (grana cores as well as stroma lamellae) and when phosphorylated it constitutes a common antenna for PSII and PSI. Moreover, LHCII was shown to work as a functional bridge that allows the energy transfer between PSII units in grana cores and between PSII and PSI centers in grana margins. Consequently, PSI can function as a quencher of excitation energy. Eventually, the LHCII phosphorylation, NPQ and the photosynthetic control of linear electron transfer via cytochrome b6f work in concert to maintain the redox poise of the electron transfer chain. This is a prerequisite for successful plant growth upon changing natural light conditions, both in short- and long-term.
Resumo:
Microstructural changes, that is an important feature for the understanding of the velocity variance in sedimentation is investigated with numerical simulations. The simulations are used to describe velocity fluctuations and hydrodynamic dispersion in a suspension of interacting point-particles sedimenting in a rectangular box with periodic sides and impenetrable bottom and top. It is observed how the positions of the particles evolve in a finite container. The suspension that was initially random in the gravity direction only, tends to be fully randomized as a result of the relative arrangements of the particles and the hydrodynamic interactions between them. The computer simulations, based on statistics over a significant number of particle configurations, suggest velocity variances and diffusivities dependent on the size of the simulated system but with anisotropy in velocity fluctuations and diffusion coefficients nearly independent of the box size.
Resumo:
The knowledge of the slug flow characteristics is very important when designing pipelines and process equipment. When the intermittences typical in slug flow occurs, the fluctuations of the flow variables bring additional concern to the designer. Focusing on this subject the present work discloses the experimental data on slug flow characteristics occurring in a large-size, large-scale facility. The results were compared with data provided by mechanistic slug flow models in order to verify their reliability when modelling actual flow conditions. Experiments were done with natural gas and oil or water as the liquid phase. To compute the frequency and velocity of the slug cell and to calculate the length of the elongated bubble and liquid slug one used two pressure transducers measuring the pressure drop across the pipe diameter at different axial locations. A third pressure transducer measured the pressure drop between two axial location 200 m apart. The experimental data were compared with results of Camargo's1 algorithm (1991, 1993), which uses the basics of Dukler & Hubbard's (1975) slug flow model, and those calculated by the transient two-phase flow simulator OLGA.
Resumo:
Työssä tutkittiin turveperävaunun renkaan kiinnitysrakenteen väsymiskestävyyttä. Väsymiskestävyyden parantamiseksi renkaiden kiinnityskohdan muotoilu ja mitoitus suunniteltiin uudelleen. Suunnittelussa keskityttiin ensisijaisesti nimellisten ja rakenteellisten jännitysheilahdusten pienentämiseen. Sekä vanhan, että uuden rakenneratkaisun väsymiskestoikiä tarkasteltiin käyttämällä hot spot – menetelmää.
Resumo:
After introducing the no-cloning theorem and the most common forms of approximate quantum cloning, universal quantum cloning is considered in detail. The connections it has with universal NOT-gate, quantum cryptography and state estimation are presented and briefly discussed. The state estimation connection is used to show that the amount of extractable classical information and total Bloch vector length are conserved in universal quantum cloning. The 1 2 qubit cloner is also shown to obey a complementarity relation between local and nonlocal information. These are interpreted to be a consequence of the conservation of total information in cloning. Finally, the performance of the 1 M cloning network discovered by Bužek, Hillery and Knight is studied in the presence of decoherence using the Barenco et al. approach where random phase fluctuations are attached to 2-qubit gates. The expression for average fidelity is calculated for three cases and it is found to depend on the optimal fidelity and the average of the phase fluctuations in a specific way. It is conjectured to be the form of the average fidelity in the general case. While the cloning network is found to be rather robust, it is nevertheless argued that the scalability of the quantum network implementation is poor by studying the effect of decoherence during the preparation of the initial state of the cloning machine in the 1 ! 2 case and observing that the loss in average fidelity can be large. This affirms the result by Maruyama and Knight, who reached the same conclusion in a slightly different manner.
Resumo:
Lesser celandine (Ranunculaceae) is a perennial weed with tuberous root. Tubers are the most important means of reproduction and dispersion of this weed. In recent years, it has spread into wheat fields in Western Iran, mainly in the Lorestan province. A series of experiments were conducted to determine cardinal temperatures and to study the effects of pre-chilling, temperature fluctuations, tuber size, freezing and drying on germination of the tubers, as well as the effect of planting depth on sprouting of the tubers. The results obtained showed that the highest percentage of germination occurred when tubers were stored for more than 2 weeks at 4 or 8 ºC. The optimum temperature for germination differed in large and small tubers (8 and 14oC, respectively). Germination was the highest (almost 100%) at temperature fluctuations of 5-10oC. Germination of the finger-like and small tubers was the highest (95%); however, very small, small, and broken tubers showed the lowest germination percentage. In the freezing experiment, decreasing the temperature and increasing the storage duration decreased the germination of tubers. Increasing the osmotic potential and temperature resulted in decreased tuber germination of Lesser celandine. Lesser celandine could sprout down to 20 cm depth but heat demand for tubers from superficial depth was smaller than for tubers planted at greater depth.
Resumo:
Temporal dynamics of the chaetophoracean green algae Chaetophora elegans (Roth) C.A. Agardh and Stigeoclonium amoenum Kützing populations was investigated biweekly during late autumn trhough early spring (April to October) in two tropical streams from northwestern São Paulo State, southeastern Brazil. Abundances of one population of each species was evaluated by the quadrat technique in terms of percent cover and frequency. The fluctuations were related to the following stream variables: temperature, turbidity, specific conductance, pH, oxygen saturation, depth, substratum type, current velocity, irradiance and nutrients. Percent cover and frequency of C. elegans had lower values throughout the study period and was positively correlated to rainfall. Other correlations (i.e. positive of percent cover with depth and current velocity and negative with irradiance) were consistently found, reinforcing the strong influence of rainfall. On the other hand, percent cover and frequency of S. amoenum had higher values, with maximum growth from June to September. Percent cover was negatively correlated to rainfall. Results suggest the precipitation regime as the most important driving force to temporal changes in both populations, but playing different roles in each one. The gelatinous thallus of C. elegans seem to be favored by the increment of current velocity, since higher flows can improve the nutrient uptake by means of reduction in diffusion shell without promoting excessive drag force. In contrast, tufts of S. amoenum are, presumably, more exposed to drag force, and, consequently, more susceptible to mechanical damage effects due to higher current velocities.
Resumo:
One of the main challenges in Software Engineering is to cope with the transition from an industry based on software as a product to software as a service. The field of Software Engineering should provide the necessary methods and tools to develop and deploy new cost-efficient and scalable digital services. In this thesis, we focus on deployment platforms to ensure cost-efficient scalability of multi-tier web applications and on-demand video transcoding service for different types of load conditions. Infrastructure as a Service (IaaS) clouds provide Virtual Machines (VMs) under the pay-per-use business model. Dynamically provisioning VMs on demand allows service providers to cope with fluctuations on the number of service users. However, VM provisioning must be done carefully, because over-provisioning results in an increased operational cost, while underprovisioning leads to a subpar service. Therefore, our main focus in this thesis is on cost-efficient VM provisioning for multi-tier web applications and on-demand video transcoding. Moreover, to prevent provisioned VMs from becoming overloaded, we augment VM provisioning with an admission control mechanism. Similarly, to ensure efficient use of provisioned VMs, web applications on the under-utilized VMs are consolidated periodically. Thus, the main problem that we address is cost-efficient VM provisioning augmented with server consolidation and admission control on the provisioned VMs. We seek solutions for two types of applications: multi-tier web applications that follow the request-response paradigm and on-demand video transcoding that is based on video streams with soft realtime constraints. Our first contribution is a cost-efficient VM provisioning approach for multi-tier web applications. The proposed approach comprises two subapproaches: a reactive VM provisioning approach called ARVUE and a hybrid reactive-proactive VM provisioning approach called Cost-efficient Resource Allocation for Multiple web applications with Proactive scaling. Our second contribution is a prediction-based VM provisioning approach for on-demand video transcoding in the cloud. Moreover, to prevent virtualized servers from becoming overloaded, the proposed VM provisioning approaches are augmented with admission control approaches. Therefore, our third contribution is a session-based admission control approach for multi-tier web applications called adaptive Admission Control for Virtualized Application Servers. Similarly, the fourth contribution in this thesis is a stream-based admission control and scheduling approach for on-demand video transcoding called Stream-Based Admission Control and Scheduling. Our fifth contribution is a computation and storage trade-o strategy for cost-efficient video transcoding in cloud computing. Finally, the sixth and the last contribution is a web application consolidation approach, which uses Ant Colony System to minimize the under-utilization of the virtualized application servers.
Resumo:
In photosynthesis, light energy is converted to chemical energy, which is consumed for carbon assimilation in the Calvin-Benson-Bassham (CBB) cycle. Intensive research has significantly advanced the understanding of how photosynthesis can survive in the ever-changing light conditions. However, precise details concerning the dynamic regulation of photosynthetic processes have remained elusive. The aim of my thesis was to specify some molecular mechanisms and interactions behind the regulation of photosynthetic reactions under environmental fluctuations. A genetic approach was employed, whereby Arabidopsis thaliana mutants deficient in specific photosynthetic protein components were subjected to adverse light conditions and assessed for functional deficiencies in the photosynthetic machinery. I examined three interconnected mechanisms: (i) auxiliary functions of PsbO1 and PsbO2 isoforms in the oxygen evolving complex of photosystem II (PSII), (ii) the regulatory function of PGR5 in photosynthetic electron transfer and (iii) the involvement of the Calcium Sensing Receptor CaS in photosynthetic performance. Analysis of photosynthetic properties in psbo1 and psbo2 mutants demonstrated that PSII is sensitive to light induced damage when PsbO2, rather than PsbO1, is present in the oxygen evolving complex. PsbO1 stabilizes PSII more efficiently compared to PsbO2 under light stress. However, PsbO2 shows a higher GTPase activity compared to PsbO1, and plants may partially compensate the lack of PsbO1 by increasing the rate of the PSII repair cycle. PGR5 proved vital in the protection of photosystem I (PSI) under fluctuating light conditions. Biophysical characterization of photosynthetic electron transfer reactions revealed that PGR5 regulates linear electron transfer by controlling proton motive force, which is crucial for the induction of the photoprotective non-photochemical quenching and the control of electron flow from PSII to PSI. I conclude that PGR5 controls linear electron transfer to protect PSI against light induced oxidative damage. I also found that PGR5 physically interacts with CaS, which is not needed for photoprotection of PSII or PSI in higher plants. Rather, transcript profiling and quantitative proteomic analysis suggested that CaS is functionally connected with the CBB cycle. This conclusion was supported by lowered amounts of specific calciumregulated CBB enzymes in cas mutant chloroplasts and by slow electron flow to PSI electron acceptors when leaves were reilluminated after an extended dark period. I propose that CaS is required for calcium regulation of the CBB cycle during periods of darkness. Moreover, CaS may also have a regulatory role in the activation of chloroplast ATPase. Through their diverse interactions, components of the photosynthetic machinery ensure optimization of light-driven electron transport and efficient basic production, while minimizing the harm caused by light induced photodamage.
Resumo:
Tämän tutkielman tarkoituksena on selvittää, miten viljatermiinejä käytetään Suomessa hintariskeiltä suojautumisen välineenä. Tutkimus on tehty viljantuottajan näkökulmasta. Tutkimusaineistona on käytetty aiheesta aiemmin tehtyä tutkimuskirjallisuutta ja varta vasten kerättyä haastatteluaineistoa. Tuottajien mielestä hintavaihteluilla oli suuri vaikutus tuotannon tulokseen ja kaikki haastatellut olivat miettineet keinoja hintavaihtelujen vaikutusten pienentämiseksi. Termiinikaupan käyttäminen viljan myynnissä on kuitenkin Suomessa melko harvinainen ilmiö. Aiempien tutkimustulosten perusteella ja kerättyyn haastatteluaineistoon perustuen vaikuttaisi siltä, että termiinikaupan vähäiseen käyttöön Suomessa ovat vaikuttaneet ainakin maataloustukien runsas osuus tilojen liikevaihdosta, tiloilla harjoitettava muu ansiotoiminta, sekä runsaat satovaihtelut. Haastatellut tuottajat pyrkivät suojautumaan hintavaihteluilta lähinnä viljaa varastoiden ja koettamalla valita tuotantoon mahdollisimman kannattavia kasveja, joilla hintavaihtelu oli vähäistä. Termiinejä tarjoavat viljantuottajille useat eri viljanostajat. Käytettäessä termiinejä säännöllisesti ja johdonmukaisesti, on termiinikaupalla tuloja tasaava vaikutus. Sen käyttö ei kuitenkaan takaa parempaa tulosta kuin käteiskauppakaan, vaan hyötynä on nimenomaan ennustettavuuden lisääntyminen ja epävarmuuden väheneminen tulovaihteluiden pienentymisen myötä. Termiinikaupasta aiheutuu tuottajalle myös kuluja ja siihen pitäisikin suhtautua kuten vakuutukseen.
Resumo:
The objective of the present study was to determine the effect of protein malnutrition on the glycoprotein content of bone marrow extracellular matrix (ECM). Two-month-old male Swiss mice were submitted to protein malnutrition with a low-protein diet containing 4% casein as compared to 20% casein in the control diet. When the experimental group had attained a 20% loss of their original body weight, we extracted the ECM proteins from bone marrow with PBS buffer, and analyzed ECM samples by SDS-PAGE (7.5%) and ECL Western blotting. Quantitative differences were observed between control and experimental groups. Bone marrow ECM from undernourished mice had greater amounts of extractable fibronectin (1.6-fold increase) and laminin (4.8-fold increase) when compared to the control group. These results suggest an association between fluctuations in the composition of the hematopoietic microenvironment and altered hematopoiesis observed in undernourished mice.
Resumo:
We investigated the behavioral correlates of the activity of serotonergic and non-serotonergic neurons in the nucleus raphe pallidus (NRP) and nucleus raphe obscurus (NRO) of unanesthetized and unrestrained cats. The animals were implanted with electrodes for recording single unit activity, parietal oscillographic activity, and splenius, digastric and masseter electromyographic activities. They were tested along the waking-sleep cycle, during sensory stimulation and during drinking behavior. The discharge of the serotonergic neurons decreased progressively from quiet waking to slow wave sleep and to fast wave sleep. Ten different patterns of relative discharge across the three states were observed for the non-serotonergic neurons. Several non-serotonergic neurons showed cyclic discharge fluctuations related to respiration during one, two or all three states. While serotonergic neurons were usually unresponsive to the sensory stimuli used, many non-serotonergic neurons responded to these stimuli. Several non-serotonergic neurons showed a phasic relationship with splenius muscle activity during auditory stimulation. One serotonergic neuron showed a tonic relationship with digastric muscle activity during drinking behavior. A few non-serotonergic neurons exhibited a tonic relationship with digastric and/or masseter muscle activity during this behavior. Many non-serotonergic neurons exhibited a phasic relationship with these muscle activities, also during this behavior. These results suggest that the serotonergic neurons in the NRP and NRO constitute a relatively homogeneous population from a functional point of view, while the non-serotonergic neurons form groups with considerable functional specificity. The data support the idea that the NRP and NRO are implicated in the control of somatic motor output.
Resumo:
The objective of the present investigation was to study the effects of a 60-s interval of venous congestion between two noninvasive measurements of arterial blood pressure (ABP) on the fluctuation of ABP, assessed by the standard deviation of the differences between two readings. ABP was measured in 345 successive patients, at rest, four times each. For 269 participants, one pair of readings was obtained with a 60-s interval and the other pair without an interval. For 76 patients, the first pair was read at the same interval, and the second pair had venous congestion interposed and there was no waiting interval. There was no increased ABP oscillation, either when there was no interval between ABP readings, or when venous congestion was interposed compared to pairs of ABP measurements performed with a 60-s interval. There was no increase in ABP oscillations when successive ABP readings were taken without an interval or even with venous congestion interposed. Contrary to the present belief, there seems to be no loss of reliability when blood pressure recordings are taken immediately one after another, in the clinical setting.