964 resultados para Elemental semiconductors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elemental analysis of soil is useful in forensic and environmental sciences. Methods were developed and optimized for two laser-based multi-element analysis techniques: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS). This work represents the first use of a 266 nm laser for forensic soil analysis by LIBS. Sample preparation methods were developed and optimized for a variety of sample types, including pellets for large bulk soil specimens (470 mg) and sediment-laden filters (47 mg), and tape-mounting for small transfer evidence specimens (10 mg). Analytical performance for sediment filter pellets and tape-mounted soils was similar to that achieved with bulk pellets. An inter-laboratory comparison exercise was designed to evaluate the performance of the LA-ICP-MS and LIBS methods, as well as for micro X-ray fluorescence (μXRF), across multiple laboratories. Limits of detection (LODs) were 0.01-23 ppm for LA-ICP-MS, 0.25-574 ppm for LIBS, 16-4400 ppm for µXRF, and well below the levels normally seen in soils. Good intra-laboratory precision (≤ 6 % relative standard deviation (RSD) for LA-ICP-MS; ≤ 8 % for µXRF; ≤ 17 % for LIBS) and inter-laboratory precision (≤ 19 % for LA-ICP-MS; ≤ 25 % for µXRF) were achieved for most elements, which is encouraging for a first inter-laboratory exercise. While LIBS generally has higher LODs and RSDs than LA-ICP-MS, both were capable of generating good quality multi-element data sufficient for discrimination purposes. Multivariate methods using principal components analysis (PCA) and linear discriminant analysis (LDA) were developed for discriminations of soils from different sources. Specimens from different sites that were indistinguishable by color alone were discriminated by elemental analysis. Correct classification rates of 94.5 % or better were achieved in a simulated forensic discrimination of three similar sites for both LIBS and LA-ICP-MS. Results for tape-mounted specimens were nearly identical to those achieved with pellets. Methods were tested on soils from USA, Canada and Tanzania. Within-site heterogeneity was site-specific. Elemental differences were greatest for specimens separated by large distances, even within the same lithology. Elemental profiles can be used to discriminate soils from different locations and narrow down locations even when mineralogy is similar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly doped polar semiconductors are essential components of today’s semiconductor industry. Most strikingly, transistors in modern electronic devices are polar semiconductor heterostructures. It is important to thoroughly understand carrier transport in such structures. In doped polar semiconductors, collective excitations of the carriers (plasmons) and the atoms (polar phonons) couple. These coupled collective excitations affect the electrical conductivity, here quantified through the carrier mobility. In scattering events, the carriers and the coupled collective modes transfer momentum between each other. Carrier momentum transferred to polar phonons can be lost to other phonons through anharmonic decay, resulting in a finite carrier mobility. The plasmons do not have a decay mechanism which transfers carrier momentum irretrievably. Hence, carrier-plasmon scattering results in infinite carrier mobility. Momentum relaxation due to either carrier–plasmon scattering or carrier–polar-phonon scattering alone are well understood. However, only this thesis manages to treat momentum relaxation due to both scattering mechanisms on an equal footing, enabling us to properly calculate the mobility limited by carrier–coupled plasmon–polar phonon scattering. We achieved this by solving the coupled Boltzmann equations for the carriers and the collective excitations, focusing on the “drag” term and on the anharmonic decay process of the collective modes. Our approach uses dielectric functions to describe both the carrier-collective mode scattering and the decay of the collective modes. We applied our method to bulk polar semiconductors and heterostructures where various polar dielectrics surround a semiconducting monolayer of MoS2, where taking plasmons into account can increase the mobility by up to a factor 15 for certain parameters. This screening effect is up to 85% higher than if calculated with previous methods. To conclude, our approach provides insight into the momentum relaxation mechanism for carrier–coupled collective mode scattering, and better tools for calculating the screened polar phonon and interface polar phonon limited mobility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The common two-banded sea bream (Diplodus vulgaris) is an important fish in the marine ecosystems of the NW Atlantic and Mediterranean. In southern Portugal it is a major fishery resource being targeted mainly by the artisanal fleets. Although there is some knowledge of the age, growth and reproductive biology of the species, information about its population structure is scarce and somewhat limited to the Mediterranean Sea. In this study the otolith elemental signatures of 90 specimens of D. vulgaris of the same age group (2+ years) and cohort collected from the important fishery regions of SW Portugal (Sesimbra, Sagres and Faro) have been analysed by inductively coupled plasma mass spectrometry (ICP-MS). Two different methodologies have been applied: solution based analysis of the whole otoliths; representative of the entire life-history prior to capture, and laser ablation analysis of otolith cores; representative of the larval and early post-settlement phase. Whole otolith comparisons utilised Sr/Ca, Ba/Ca, Mn/Ca, Li/Ca and Ni/Ca to demonstrate regional population structure. Classification accuracy rates from linear discriminant function analyses (LDFA) of whole otolith chemistry data were high for each region; Faro - 93%, Sagres - 90% and Sesimbra - 80%. Comparison of the otolith core chemistry utilised Sr/Ca, Ba/Ca, Mn/Ca and Mg/Ca and Zn/Ca. LDFA for the otolith core chemistry also achieved accurate classification for samples from Sesimbra (73%), but there was high overlap of otolith chemistry between samples from Faro and Sagres (47 and 43% classification accuracy respectively). The whole otolith results suggest that D. vulgaris are resident in the regional fishing areas during the juvenile phase. Both the core and whole otolith chemistry data supported separation of the Sesimbra fishery region from the more southern and closely associated Faro and Sagres regions for management purposes. However, while the whole otolith data indicated that the populations at Faro and Sagres likely remained separated in the juvenile stage, the otolith core chemistry data was inconclusive as to whether recruitment to these two areas was derived, or not, from different spawning areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the synthesis and characterisation of novel conjugated organic materials with optoelectronic application. The first chapter provides an introduction about organic semiconductors and in particular about their working principle from a physical and chemical point of view. An overview of the most common types of solar cells is provided, including examples of some of the best performing materials. The second chapter describes the synthesis of a new library of flavin derivatives as potential active materials for optoelectronic applications. Flavins are natural redox-active molecules, which show potential application in optoelectronics, thanks to their stability and versatility. FPF-Flavins, for instance, could be used either as acceptor units in push-pull polyconjugated systems or as acceptor unit in dyes for DSSCs. In the same chapter a first attempt of synthesising bis-flavins to be used as N-type semiconductors in BHJ devices is described. The third chapter describes the successful synthesis and characterization of a series of conjugated organic molecules based on the benzothiadiazole moiety. Among these, three molecules containing ferrocene as donor unit were tested as sensitizers for DSSCs, reporting a PCE of 0.3% as the best result. Further studies indicated a significant problem of charge recombination which limits the performance. A near-infrared absorbing push-pull polymer, based on BbT as acceptor unit, was also synthesised and tested in BHJ devices as P-type semiconductor in blend with PC71BM, showing a VOC of 0.71 V. Finally, the last chapter describes the synthesis of several tetrathiafulvalene derivatives in order to explore this moiety as donor unit in dyes for DSSCs and as HTM for perovskite-based solar cells. In particular, two very simple dyes were synthesised and implemented in DSSCs reporting a PCE 0.2% and 0.4%, respectively. The low efficiency was associated to the tendency to aggregate at the solid state, with the absorption shifting from the visible to the infrared range. A conjugated molecule, containing a DPP core, was also synthesised and tested as HTM for perovskite solar cells. The best reported PCE of 7.7% was obtained without any additives. A case study about dehalogenation and “halogen dance” in TTF iodide is also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of 7 cerium double-decker complexes with various tetrapyrrole ligands including porphyrinates, phthalocyaninates, and 2,3-naphthalocyaninates have been prepared by previously described methodologies and characterized with elemental analysis and a range of spectroscopic methods. The molecular structures of two heteroleptic \[(na)phthalocyaninato](porphyrinato) complexes have also been determined by X-ray diffraction analysis which exhibit a slightly distorted square antiprismatic geometry with two domed ligands. Having a range of tetrapyrrole ligands with very different electronic properties, these compounds have been systematically investigated for the effects of ligands on the valence of the cerium center. On the basis of the spectroscopic (UV−vis, near-IR, IR, and Raman), electrochemical, and structural data of these compounds and compared with those of the other rare earth(III) counterparts reported earlier, it has been found that the cerium center adopts an intermediate valence in these complexes. It assumes a virtually trivalent state in cerium bis(tetra-tert-butylnaphthalocyaninate) as a result of the two electron rich naphthalocyaninato ligands, which facilitate the delocalization of electron from the ligands to the metal center. For the rest of the cerium double-deckers, the cerium center is predominantly tetravalent. The valences (3.59−3.68) have been quantified according to their LIII-edge X-ray absorption near-edge structure (XANES) profiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to review the existing instrumental methods to monitor airborne nanoparticle in different types of indoor and outdoor environments in order to detect their presence and to characterise their properties. Firstly the terminology and definitions used in this field are discussed, which is followed by a review of the methods to measure particle physical characteristics including number concentration, size distribution and surface area. An extensive discussion is provided on the direct methods for particle elemental composition measurements, as well as on indirect methods providing information on particle volatility and solubility, and thus in turn on volatile and semivolatile compounds of which the particle is composed. A brief summary of broader considerations related to nanoparticle monitoring in different environments concludes the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern Engineering Asset Management (EAM) requires the accurate assessment of current and the prediction of future asset health condition. Appropriate mathematical models that are capable of estimating times to failures and the probability of failures in the future are essential in EAM. In most real-life situations, the lifetime of an engineering asset is influenced and/or indicated by different factors that are termed as covariates. Hazard prediction with covariates is an elemental notion in the reliability theory to estimate the tendency of an engineering asset failing instantaneously beyond the current time assumed that it has already survived up to the current time. A number of statistical covariate-based hazard models have been developed. However, none of them has explicitly incorporated both external and internal covariates into one model. This paper introduces a novel covariate-based hazard model to address this concern. This model is named as Explicit Hazard Model (EHM). Both the semi-parametric and non-parametric forms of this model are presented in the paper. The major purpose of this paper is to illustrate the theoretical development of EHM. Due to page limitation, a case study with the reliability field data is presented in the applications part of this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tungsten trioxide is one of the potential semiconducting materials used for sensing NH3, CO, CH4 and acetaldehyde gases. The current research aims at development, microstructural characterization and gas sensing properties of thin films of Tungsten trioxide (WO3). In this paper, we intend to present the microstructural characterization of these films as a function of post annealing heat treatment. Microstructural and elemental analysis of electron beam evaporated WO3 thin films and iron doped WO3 films (WO3:Fe) have been carried out using analytical techniques such as Transmission electron microscopy, Rutherford Backscattered Spectroscopy and XPS analysis. TEM analysis revealed that annealing at 300oC for 1 hour improves cyrstallinity of WO3 film. Both WO3 and WO3:Fe films had uniform thickness and the values corresponded to those measured during deposition. RBS results show a fairly high concentration of oxygen at the film surface as well as in the bulk for both films, which might be due to adsorption of oxygen from atmosphere or lattice oxygen vacancy inherent in WO3 structure. XPS results indicate that tungsten exists in 4d electronic state on the surface but at a depth of 10 nm, both 4d and 4f electronic states were observed. Atomic force microscopy reveals nanosize particles and porous structure of the film. This study shows e-beam evaporation technique produces nanoaparticles and porous WO3 films suitable for gas sensing applications and doping with iron decreases the porosity and particle size which can help improve the gas selectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Controlled synthesis of carbon nanotubes (CNTs) is highly desirable for nanoelectronic applications. To date, metallic catalyst particles have been deemed unavoidable for the nucleation and growth of any kind of CNTs. Ordered arrays of nanotubes have been obtained by controlled deposition of the metallic catalyst particles. However, the presence of metal species mixed with the CNTs represents a shortcoming for most electronic applications, as metal particles are incompatible with silicon semiconductor technology. In the present paper we report on a metal-catalyst-free synthesis of CNTs, obtained through Ge nanoparticles on a Si(001) surface patterned by nanoindentation. By using acetylene as the carbon feed gas in a low-pressure Chemical Vapor Deposition (CVD) system, multi-walled carbon nanotubes (MWNT) have been observed to arise from the smallest Ge islands. The CNTs and the Ge three-dimensional structures have been analysed by SEM, EDX and AFM in order to assess their elemental features and properties. EDX and SEM results allow confirmation of the absence of any metallic contamination on the surface, indicating that the origin of the CNT growth is due to the Ge nanocrystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cleaning of sugar mill evaporators is an expensive exercise. Identifying the scale components assists in determining which chemical cleaning agents would result in effective evaporator cleaning. The current methods (based on x-ray diffraction techniques, ion exchange/high performance liquid chromatography and thermogravimetry/differential thermal analysis) used for scale characterisation are difficult, time consuming and expensive, and cannot be performed in a conventional analytical laboratory or by mill staff. The present study has examined the use of simple descriptor tests for the characterisation of Australian sugar mill evaporator scales. Scale samples were obtained from seven Australian sugar mill evaporators by mechanical means. The appearance, texture and colour of the scale were noted before the samples were characterised using x-ray fluorescence and x-ray powder diffraction to determine the compounds present. A number of commercial analytical test kits were used to determine the phosphate and calcium contents of scale samples. Dissolution experiments were carried out on the scale samples with selected cleaning agents to provide relevant information about the effect the cleaning agents have on different evaporator scales. Results have shown that by simply identifying the colour and the appearance of the scale, the elemental composition and knowing from which effect the scale originates, a prediction of the scale composition can be made. These descriptors and dissolution experiments on scale samples can be used to provide factory staff with an on-site rapid process to predict the most effective chemicals for chemical cleaning of the evaporators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most studies on the characterisation of deposits on heat exchangers have been based on bulk analysis, neglecting the fine structural features and the compositional profiles of layered deposits. Attempts have been made to fully characterise a fouled stainless steel tube obtained from a quintuple Roberts evaporator of a sugar factory using X-ray diffraction and scanning electron microscopy techniques. The deposit contains three layers at the bottom of the tube and two layers on the other sections and is composed of hydroxyapatite, calcium oxalate dihydrate and an amorphous material. The proportions of these phases varied along the tube height. Energy-dispersive spectroscopy and XRD analysis on the surfaces of the outermost and innermost layers showed that hydroxyapatite was the major phase attached to the tube wall, while calcium oxalate dihydrate (with pits and voids) was the major phase on the juice side. Elemental mapping of the cross-sections of the deposit revealed the presence of a mineral, Si-Mg-Al-Fe-O, which is probably a silicate mineral. Reasons for the defects in the oxalate crystal surfaces, the differences in the crystal size distribution from bottom to the top of the tube and the composite fouling process have been postulated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Films found on the windows of residential buildings have been studied. The main aim of the paper was to assess the roles of the films in the accumulation of potentially toxic chemicals in residential buildings. Thus the elemental and polycyclic aromatic hydrocarbon compositions of the surface films from the glass windows of eighteen residential buildings were examined. The presence of sample amounts of inorganic elements (4.0–1.2 × 106 μg m−2) and polycyclic aromatic hydrocarbons in the films (BDL - 620.1 ng m−2) has implications for human exposure and the fate of pollutants in the urban environment. To facilitate the interpretation of the results, data matrices consisting of the chemical composition of the films and the building characteristics were subjected to multivariate data analysis methods, and these revealed that the accumulation of the chemicals was strongly dependent on building characteristics such as the type of glass used for the window, the distance from a major road, age of the building, distance from an industrial activity, number of smokers in the building and frequency of cooking in the buildings. Thus, building characteristics which minimize the accumulation of pollutants on the surface films need to be encouraged.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of polymerlike amorphous carbon(a-C:H) thin-films by microwave excited collisional hydrocarbon plasma process is reported. Stable and highly aromatic a-C:H were obtained containing significant inclusions of poly(p-phenylene vinylene) (PPV). PPV confers universal optoelectronic properties to the synthesized material. That is a-C:H with tailor-made refractive index are capable of becoming absorption-free in visible (red)-near infrared wavelength range. Production of large aromatic hydrocarbon including phenyl clusters and/or particles is attributed to enhanced coagulation of elemental plasma species under collisional plasma conditions. Detailed structural and morphological changes that occur in a-C:H during the plasma synthesis are also described.