947 resultados para Electronic, optical and computing companies
Resumo:
Sputtered silicon is investigated as a bonding layer for transfer of pre-processed silicon layers to various insulating substrates. Although the material appears suitable for low temperature processing, previous work has shown that gas trapped in the pores of the sputtered material is released at temperatures above 350 degrees C and further increases of temperature lead to destruction of any bonded interface. Pre-annealing at 1000 degrees C before bonding drives out gas and/or seals the surface, but for device applications where processing temperatures must be kept below about 300 degrees C, this technique cannot be used. In the current work, we have investigated the effect of excimer laser-annealing to heat the sputtered silicon surface to high temperature whilst minimising heating of the underlying substrate. Temperature profile simulations are presented and the results of RBS, TEM and AFM used to characterise the annealed layers. The results verify that gases are present in the sub-surface layers and suggest that while sealing of the surface is important for suppression of the out-diffusion of gases, immediate surface gas removal may also play a role. The laser-annealing technique appears to be an effective method of treating sputtered silicon, yielding a low roughness surface suitable for wafer bonding, thermal splitting and layer transfer.
Resumo:
A modification of liquid source misted chemical deposition process (LSMCD) with heating mist and substrate has developed, and this enabled to control mist penetrability and fluidity on sidewalls of three-dimensional structures and ensure step coverage. A modified LSMCD process allowed a combinatorial approach of Pb(Zr,Ti)O-3 (PZT) thin films and carbon nanotubes (CNTs) toward ultrahigh integration density of ferroelectric random access memories (FeRAMs). The CNTs templates were survived during the crystallization process of deposited PZT film onto CNTs annealed at 650 degrees C in oxygen ambient due to a matter of minute process, so that the thermal budget is quite small. The modified LSMCD process opens up the possibility to realize the nanoscale capacitor structure of ferroelectric PZT film with CNTs electrodes toward ultrahigh integration density FeRAMs.
Resumo:
This paper summarises some of the most recent work that has been done on nanoscale ferroelectrics as a result of a joint collaborative research effort involving groups in Queen's University Belfast, the University of Cambridge and the University of St. Andrews. Attempts have been made to observe fundamental effects of reduced size, and increasing morphological complexity, on ferroelectric behaviour by studying the functional response and domain characteristics in nanoscale single crystal material, whose size and morphology have been defined by Focused Ion Beam (FIB) patterning. This approach to nanoshape fabrication has allowed the following broad statements to be made: (i) in single crystal BaTiO3 sheets, permittivity and phase transition behaviour is not altered from that of bulk material down to a thickness of similar to 75 nm; (ii) in single crystal BaTiO3 sheets and nanowires changes in observed domain morphologies are consistent with large scale continuum modeling.
Resumo:
The focused ion beam microscope (FIB) has been used to fabricate thin parallel-sided ferroelectric capacitors from single crystals of BaTiO3 and SrTiO3. A series of nano-sized capacitors ranging in thickness from similar to660 nm to similar to300 nm were made. Cross-sectional high resolution transmission electron microscopy (HRTEM) revealed that during capacitor fabrication, the FIB rendered around 20 nm of dielectric at the electrode-dielectric interface amorphous, associated with local gallium impregnation. Such a region would act electrically in series with the single crystal and would presumably have a considerable negative influence on the dielectric properties. However, thermal annealing prior to gold electrodes deposition was found to fully recover the single crystal capacitors and homogenise the gallium profile. The dielectric testing of the STO ultra-thin single crystal capacitors was performed yielding a room temperature dielectric constant of similar to300, as is the case in bulk. Therefore, there was no evidence of a collapse in dielectric constant associated with thin film dimensions.
Resumo:
Pulsed Laser Deposition (PLD) was used to make Au/(Ba0.5Sr0.5)TiO3/(La0.5Sr0.5) CoO3/MgO thin film capacitor structures. Functional properties were studied with changing BST thickness from similar to1265 nm to similar to63 nm. The dielectric constant was found to decrease, and migration of T-m (the temperature at which the dielectric constant is maximum) to lower temperatures occurred as thickness was reduced. Curie-Weiss plots of the as-obtained dielectric data, indicated that the Curie temperature was also systemmatically progressively depressed. Further, fitting to expressions previously used to describe diffuse phase transitions suggested increased diffuseness in transformation behaviour as film thickness decreased. This paper discusses the care needed in interpreting the observations given above. We make particular distinction between the apparent Curie-temperature derived from Curie-Weiss plots of as-measured data, and the inherent Curie temperature determined after correction for the interfacial capacitance. We demonstrate that while the apparent Curie temperature decreases as thickness decreases, the inherent Curie temperature is thickness independent. Thickness-invariant phase transition behaviour is confirmed from analysis of polarisation loops, and from examination of the temperature dependence of the loss-tangent. We particularly note that correction of data for interfacial capacitance does not alter the position of T-m. We must therefore conclude that the position of T-m is not related simply to phase transformation behaviour in BST thin films.
Resumo:
We invoke the onset of dislocations along the BaTiO3-SrTiO3 interface as reported by Wunderlich et al. to explain the non-monotonic behaviour of the dielectric permittivity as a function of superlattice periodicity and the less than four-fold in-plane symmetry at the dielectric maximum. At a periodicity of about 10/10, depending on composition and growth mechanism, several groups report a maximum of dielectric permittivity. In addition to that we observe in-plane symmetry less than tetragonal for 10/10 superlattices by HR-XRD, in contrast to initial low-resolution data from Tabata et al. thus challenging the assumption of unrelaxed strain all the way through the superlattice. The aim of this article is to link both effects to the increasing volume fraction of conducting layers close to the interface in series with the superlattice layers.
Resumo:
We have conducted a broad survey of switching behavior in thin films of a range of ferroelectric materials, including some materials that are not typically considered for FeRAM applications, and are hence less studied. The materials studied include: strontium bismuth tantalate (SBT), barium strontium titanate (BST), lead zicronate titanate (PZT), and potassium nitrate (KNO3). Switching in ferroelectric thin films is typically considered to occur by domain nucleation and growth. We discuss two models of frequency dependence of coercive field, the Ishisbashi-Orihara theory where the limiting step is domain growth and the model of Du and Chen where the limiting step is nucleation. While both models fit the data fairly well the temperature dependence of our results on PZT and BST suggest that the nucleation model of Du and Chen is more appropriate for the experimental results that we have obtained.
Resumo:
Despite enormous potential for technological applications, fundamentals of stable non-equilibrium micro-plasmas at ambient pressure are still only partly understood. Micro-plasma jets are one sub-group of these plasma sources. For an understanding it is particularly important to analyse transport phenomena of energy and particles within and between the core and effluent of the discharge. The complexity of the problem requires the combination and correlation of various highly sophisticated diagnostics yielding different information with an extremely high temporal and spatial resolution. A specially designed rf microscale atmospheric pressure plasma jet (µ-APPJ) provides excellent access for optical diagnostics to the discharge volume and the effluent region. This allows detailed investigations of the discharge dynamics and energy transport mechanisms from the discharge to the effluent. Here we present examples for diagnostics applicable to different regions and combine the results. The diagnostics applied are optical emission spectroscopy (OES) in the visible and ultraviolet and two-photon absorption laser-induced fluorescence spectroscopy. By the latter spatially resolved absolutely calibrated density maps of atomic oxygen have been determined for the effluent. OES yields an insight into energy transport mechanisms from the core into the effluent. The first results of spatially and phase-resolved OES measurements of the discharge dynamics of the core are presented.
Resumo:
This paper provides a comprehensive analysis of thermal resistance of trench isolated bipolar transistors on SOI substrates based on 3D electro-thermal simulations calibrated to experimental data. The impact of emitter length, width, spacing and number of emitter fingers on thermal resistance is analysed in detail. The results are used to design and optimise transistors with minimum thermal resistance and minimum transistor area. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The present paper proposes for the first time, a novel design methodology based on the optimization of source/drain extension (SDE) regions to significantly improve the trade-off between intrinsic voltage gain (A(vo)) and cut-off frequency (f(T)) in nanoscale double gate (DG) devices. Our results show that an optimally designed 25 nm gate length SDE region engineered DG MOSFET operating at drain current of 10 mu A/mu m, exhibits up to 65% improvement in intrinsic voltage gain and 85% in cut-off frequency over devices designed with abrupt SIDE regions. The influence of spacer width, lateral source/drain doping gradient and symmetric as well as asymmetrically designed SDE regions on key analog figures of merit (FOM) such as transconductance (g(m)), transconductance-to-current ratio (g(m)/I-ds), Early voltage (V-EA), output conductance (g(ds)) and gate capacitances are examined in detail. The present work provides new opportunities for realizing future low-voltage/low-power analog circuits with nanoscale SDE engineered DG MOSFETs. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work presents a systematic analysis on the impact of source-drain engineering using gate
Resumo:
Voltammetric studies of the reduction of oxygen in the room temperature ionic liquid [C(4)dmim][N(Tf)(2)] have revealed a significant positive shift in the back peak potential, relative to that expected for a simple electron transfer. This shift is thought to be due to the strong association of the electrogenerated superoxide anion with the solvent cation. In this work we quantitatively simulate the microdisc electrode voltammetry using a model based upon a one-electron reduction followed by a reversible chemical step, involving the formation of the [C(4)dmim](+)center dot center dot center dot O-2(center dot-) ion-pair, and in doing so we extract a set of parameters completely describing the system. We have simulated the voltammetry in the absence of a following chemical step and have shown that it is impossible to simultaneously fit both the forward and reverse peaks. To further support the parameters extracted from fitting the experimental voltammetry, we have used these parameters to independently simulate the double step chronoamperometric response and found excellent agreement. The parameters used to describe the association of the O-2(center dot-) with the [C(4)dmim](+) were k(f) = 1.4 x 10(3) s(-1) for the first-order rate constant and K-eq = 25 for the equilibrium constant.
Resumo:
The electrochemical reduction of I atm hydrogen sulfide gas (H2S) has been studied at a platinum microelectrode (10 mu m diameter) in five room temperature ionic liquids (RTILs): [C(2)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf], [C(4)mim][NO3] and [C(4)mim]][PF6] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [C(4)mpyrr](+) = N-butyl-N-methylpyrrolidinium, [OTf](-) = trifluoromethlysulfonate, [NO3](-) = nitrate, and [PF6](-) = hexafluorophosphate). In all five RTILs, a chemically irreversible reduction peak was observed on the reductive sweep, followed by one or two oxidative peaks on the reverse scan. The oxidation peaks were assigned to the oxidation of SH- and adsorbed hydrogen. In addition, a small reductive peak was observed prior to the large wave in [C(2)mim]][NTf2] only, which may be due to the reduction of a sulfur impurity in the gas. Potential-step chronoamperometry was carried out on the reduction peak of H2S, revealing diffusion coefficients of 3.2, 4.6, 2.4, 2.7, and 3.1 x 10(-11) m(2) s(-1) and solubilities of 529, 236, 537, 438, and 230 mM in [C(2)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf], [C(4)mim][NO3], and [C(4)mim]][PF6], respectively. The solubilities of H2S in RTILs are much higher than those reported in conventional molecular solvents, suggesting that RTILs may be very favorable gas sensing media for H2S detection.
Resumo:
The mechanism of sulfur dioxide reduction at a platinum microelectrode was investigated by cyclic voltammetry in several room-temperature ionic liquids (RTILs)-[C(2)mim][NTf2], [C(4)mim][BF4], [C(4)mim][NO3], [C(4)mim][PF6], and [C(6)mim][Cl] where [C(2)mim] is 1-ethyl-3-methylimidazolium, [C(4)mim] is 1-butyl-3-methylimidazolium, [C(6)mim] is 1-hexyl-3-methylimidazolium, and [NTf2] is bis(trifluoromethylsufonyl)imide-with special attention paid to [C(4)mim][NO3] because of the well-defined voltammetry, high solubility, and relatively low diffusion coefficient of SO2 obtained in that ionic liquid. A cathodic peak is observed in all RTILs between -2.0 and -1.0 V versus a silver quasi-reference electrode. In [C(4)mim][NO3], the peak appears at -1.0 V, and potential step chronoamperometry was used to determine that SO2 has a very high solubility of 3100 (+/-450) mM and a diffusion coefficient of 5.0 (+/-0.8) x 10(-10) m(2) s(-1) in that ionic liquid. On the reverse wave, up to four anodic peaks are observed at ca. -0.4, -0.3, -0.2, and 0.2 V in [C(4)mim][NO3]. The cathodic wave is assigned to the reduction of SO2 to its radical anion, SO2-center dot. The peaks at -0.4 and -0.2 V are assigned to the oxidation of unsolvated and solvated SO2-center dot, respectively. The peak appearing at 0.2 V is assigned to the oxidation of either S2O42- or S2O4-center dot. The activation energy for the reduction of SO2 in [C(4)mim][NO3] was measured to be 10 (+/-2) kJ mol(-1) using chronoamperometric data at different temperatures. The stabilizing interaction of the solvent with the reduced species SO2-center dot leads to a different mechanism than that observed in conventional aprotic solvents. The high sensitivity of the system to SO2 also suggests that [C(4)mim][NO3] may be a viable solvent in gas sensing applications.