931 resultados para Egua - Doenças
Resumo:
Diplodia corticola is regarded as the most virulent fungus involved in cork oak decline, being able to infect not only Quercus species (mainly Q. suber and Q. ilex), but also grapevines (Vitis vinifera) and eucalypts (Eucalyptus sp.). This endophytic fungus is also a pathogen whose virulence usually manifests with the onset of plant stress. Considering that the infection normally culminates in host death, there is a growing ecologic and socio-economic concern about D. corticola propagation. The molecular mechanisms of infection are hitherto largely unknown. Accordingly, the aim of this study was to unveil potential virulence effectors implicated in D. corticola infection. This knowledge is fundamental to outline the molecular framework that permits the fungal invasion and proliferation in plant hosts, causing disease. Since the effectors deployed are mostly proteins, we adopted a proteomic approach. We performed in planta pathogenicity tests to select two D. corticola strains with distinct virulence degrees for our studies. Like other filamentous fungi D. corticola secretes protein at low concentrations in vitro in the presence of high levels of polysaccharides, two characteristics that hamper the fungal secretome analysis. Therefore, we first compared several methods of extracellular protein extraction to assess their performance and compatibility with 1D and 2D electrophoretic separation. TCA-Acetone and TCA-phenol protein precipitation were the most efficient methods and the former was adopted for further studies. The proteins were extracted and separated by 2D-PAGE, proteins were digested with trypsin and the resulting peptides were further analysed by MS/MS. Their identification was performed by de novo sequencing and/or MASCOT search. We were able to identify 80 extracellular and 162 intracellular proteins, a milestone for the Botryosphaeriaceae family that contains only one member with the proteome characterized. We also performed an extensive comparative 2D gel analysis to highlight the differentially expressed proteins during the host mimicry. Moreover, we compared the protein profiles of the two strains with different degrees of virulence. In short, we characterized for the first time the secretome and proteome of D. corticola. The obtained results contribute to the elucidation of some aspects of the biology of the fungus. The avirulent strain contains an assortment of proteins that facilitate the adaptation to diverse substrates and the identified proteins suggest that the fungus degrades the host tissues through Fenton reactions. On the other hand, the virulent strain seems to have adapted its secretome to the host characteristics. Furthermore, the results indicate that this strain metabolizes aminobutyric acid, a molecule that might be the triggering factor of the transition from a latent to a pathogenic state. Lastly, the secretome includes potential pathogenicity effectors, such as deuterolysin (peptidase M35) and cerato-platanin, proteins that might play an active role in the phytopathogenic lifestyle of the fungus. Overall, our results suggest that D. corticola has a hemibiotrophic lifestyle, switching from a biotrophic to a necrotrophic interaction after plant physiologic disturbances.This understanding is essential for further development of effective plant protection measures.
Resumo:
Cachexia is a complex syndrome characterized by severe weight loss frequently observed in cancer patients and associated with poor prognosis. Cancer cachexia is also related to modifications in cardiac muscle structure and metabolism leading to cardiac dysfunction. In order to better understand the cardiac remodeling induced by bladder cancer and the impact of exercise training after diagnosis on its regulation, we used an animal model of bladder cancer induced by exposition to N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) in the drinking water. Healthy animals and previously BBN exposed animals were submitted to a training program in a treadmill at a speed of 20m/min, 60 min/day, 5 days/week during 13 weeks. At the end of the protocol, animals exposed to BBN presented a significant decrease of body weight, in comparison with control groups, supporting the presence of cancer cachexia. Morphological analysis of the cardiac muscle sections revealed the presence of fibrosis and a significant decrease of cardiomyocyte’s cross-sectional area, suggesting the occurrence of cardiac dysfunction associated with bladder cancer. These modifications were accompanied by heart metabolic remodeling characterized by a decreased fatty acid oxidation given by diminished levels of ETFDH and of complex II subunit from the respiratory chain. Exercise training promoted an increment of connexin 43, a protein involved in cardioprotection, and of c-kit, a protein present in cardiac stem cells. These results suggest an improved heart regenerative capacity induced by exercise training. In conclusion, endurance training seems an attractive non-pharmacological therapeutic option for the management of cardiac dysfunction in cancer cachexia.
Resumo:
Candida albicans is the major fungal pathogen in humans, causing diseases ranging from mild skin infections to severe systemic infections in immunocompromised individuals. The pathogenic nature of this organism is mostly due to its capacity to proliferate in numerous body sites and to its ability to adapt to drastic changes in the environment. Candida albicans exhibit a unique translational system, decoding the leucine-CUG codon ambiguously as leucine (3% of codons) and serine (97%) using a hybrid serine tRNA (tRNACAGSer). This tRNACAGSer is aminoacylated by two aminoacyl tRNA synthetases (aaRSs): leucyl-tRNA synthetase (LeuRS) and seryl-tRNA synthetase (SerRS). Previous studies showed that exposure of C. albicans to macrophages, oxidative, pH stress and antifungals increases Leu misincorporation levels from 3% to 15%, suggesting that C. albicans has the ability to regulate mistranslation levels in response to host defenses, antifungals and environmental stresses. Therefore, the hypothesis tested in this work is that Leu and Ser misincorporation at CUG codons is dependent upon competition between the LeuRS and SerRS for the tRNACAGSer. To test this hypothesis, levels of the SerRS and LeuRS were indirectly quantified under different physiological conditions, using a fluorescent reporter system that measures the activity of the respective promoters. Results suggest that an increase in Leu misincorporation at CUG codons is associated with an increase in LeuRS expression, with levels of SerRS being maintained. In the second part of the work, the objective was to identify putative regulators of SerRS and LeuRS expression. To accomplish this goal, C. albicans strains from a transcription factor knock-out collection were transformed with the fluorescent reporter system and expression of both aaRSs was quantified. Alterations in the LeuRS/SerRS expression of mutant strains compared to wild type strain allowed the identification of 5 transcription factors as possible regulators of expression of LeuRS and SerRS: ASH1, HAP2, HAP3, RTG3 and STB5. Globally, this work provides the first step to elucidate the molecular mechanism of regulation of mistranslation in C. albicans.
Resumo:
Dissertação mest., Ciências Biomédicas, Universidade do Algarve, 2010
Resumo:
Dissertação de Mestrado, Engenharia Biológica, Faculdade de Engenharia de Recursos Naturais, Universidade do Algarve, 2009
Resumo:
Dissertação mest., Psicologia, Universidade do Algarve, 2009
Resumo:
Dissertação de mest., Ciências Biomédicas, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2009
Resumo:
Dissertação de Mestrado, Aquacultura e Pescas, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2006
Resumo:
Dissertação mest., Biotecnologia, Universidade do Algarve, 2008
Resumo:
Tese dout., Ciências e Tecnologias do Ambiente, 2009, Universidade do Algarve
Resumo:
Tese de dout., Ciências Agrárias (Protecção de Plantas), Unidade de Ciências e Tecnologias Agrárias, Univ. do Algarve, 1994
Resumo:
Dissertação de dout., Bioquímica Vegetal (Biotecnologia Vegetal), Univ. do Algarve, 1994
Resumo:
Dissertação de mest., Ciências Farmacêuticas, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2010
Resumo:
Dissertação de mest., Ciências Biomédicas, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2011
Resumo:
Tese de dout., Bioquímica (Biologia Celular e Molecular), Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2010