993 resultados para Distributions (Statistics).
Resumo:
Cette thèse porte sur l'analyse bayésienne de données fonctionnelles dans un contexte hydrologique. L'objectif principal est de modéliser des données d'écoulements d'eau d'une manière parcimonieuse tout en reproduisant adéquatement les caractéristiques statistiques de celles-ci. L'analyse de données fonctionnelles nous amène à considérer les séries chronologiques d'écoulements d'eau comme des fonctions à modéliser avec une méthode non paramétrique. Dans un premier temps, les fonctions sont rendues plus homogènes en les synchronisant. Ensuite, disposant d'un échantillon de courbes homogènes, nous procédons à la modélisation de leurs caractéristiques statistiques en faisant appel aux splines de régression bayésiennes dans un cadre probabiliste assez général. Plus spécifiquement, nous étudions une famille de distributions continues, qui inclut celles de la famille exponentielle, de laquelle les observations peuvent provenir. De plus, afin d'avoir un outil de modélisation non paramétrique flexible, nous traitons les noeuds intérieurs, qui définissent les éléments de la base des splines de régression, comme des quantités aléatoires. Nous utilisons alors le MCMC avec sauts réversibles afin d'explorer la distribution a posteriori des noeuds intérieurs. Afin de simplifier cette procédure dans notre contexte général de modélisation, nous considérons des approximations de la distribution marginale des observations, nommément une approximation basée sur le critère d'information de Schwarz et une autre qui fait appel à l'approximation de Laplace. En plus de modéliser la tendance centrale d'un échantillon de courbes, nous proposons aussi une méthodologie pour modéliser simultanément la tendance centrale et la dispersion de ces courbes, et ce dans notre cadre probabiliste général. Finalement, puisque nous étudions une diversité de distributions statistiques au niveau des observations, nous mettons de l'avant une approche afin de déterminer les distributions les plus adéquates pour un échantillon de courbes donné.
Resumo:
Dans ce mémoire, nous avons utilisé le logiciel R pour la programmation.
Resumo:
Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont des outils très populaires pour l’échantillonnage de lois de probabilité complexes et/ou en grandes dimensions. Étant donné leur facilité d’application, ces méthodes sont largement répandues dans plusieurs communautés scientifiques et bien certainement en statistique, particulièrement en analyse bayésienne. Depuis l’apparition de la première méthode MCMC en 1953, le nombre de ces algorithmes a considérablement augmenté et ce sujet continue d’être une aire de recherche active. Un nouvel algorithme MCMC avec ajustement directionnel a été récemment développé par Bédard et al. (IJSS, 9 :2008) et certaines de ses propriétés restent partiellement méconnues. L’objectif de ce mémoire est de tenter d’établir l’impact d’un paramètre clé de cette méthode sur la performance globale de l’approche. Un second objectif est de comparer cet algorithme à d’autres méthodes MCMC plus versatiles afin de juger de sa performance de façon relative.
Resumo:
Les cellules sont capables de détecter les distributions spatiales de protéines et ainsi de migrer ou s’étendre dans la direction appropriée. Une compréhension de la réponse cellulaire aux modifications de ces distributions spatiales de protéines est essentielle pour l’avancement des connaissances dans plusieurs domaines de recherches tels que le développement, l’immunologie ou l’oncologie. Un exemple particulièrement complexe est le guidage d’axones se déroulant pendant le développement du système nerveux. Ce dernier nécessite la présence de plusieurs distributions de molécules de guidages étant attractives ou répulsives pour connecter correctement ce réseau complexe qu’est le système nerveux. Puisque plusieurs indices de guidage collaborent, il est particulièrement difficile d’identifier la contribution individuelle ou la voie de signalisation qui est déclenchée in vivo, il est donc nécessaire d’utiliser des méthodes pour reproduire ces distributions de protéines in vitro. Plusieurs méthodes existent pour produire des gradients de protéines solubles ou liées aux substrats. Quelques méthodes pour produire des gradients solubles sont déjà couramment utilisées dans plusieurs laboratoires, mais elles limitent l’étude aux distributions de protéines qui sont normalement sécrétées in vivo. Les méthodes permettant de produire des distributions liées au substrat sont particulièrement complexes, ce qui restreint leur utilisation à quelques laboratoires. Premièrement, nous présentons une méthode simple qui exploite le photoblanchiment de molécules fluorescentes pour créer des motifs de protéines liées au substrat : Laser-assisted protein adsorption by photobleaching (LAPAP). Cette méthode permet de produire des motifs de protéines complexes d’une résolution micrométrique et d’une grande portée dynamique. Une caractérisation de la technique a été faite et en tant que preuve de fonctionnalité, des axones de neurones du ganglion spinal ont été guidés sur des gradients d’un peptide provenant de la laminine. Deuxièmement, LAPAP a été amélioré de manière à pouvoir fabriquer des motifs avec plusieurs composantes grâce à l’utilisation de lasers à différentes longueurs d’onde et d’anticorps conjugués à des fluorophores correspondants à ces longueurs d’onde. De plus, pour accélérer et simplifier le processus de fabrication, nous avons développé LAPAP à illumination à champ large qui utilise un modulateur spatial de lumière, une diode électroluminescente et un microscope standard pour imprimer directement un motif de protéines. Cette méthode est particulièrement simple comparativement à la version originale de LAPAP puisqu’elle n’implique pas le contrôle de la puissance laser et de platines motorisées, mais seulement d’envoyer l’image du motif désiré au modulateur spatial. Finalement, nous avons utilisé LAPAP pour démontrer que notre technique peut être utilisée dans des analyses de haut contenu pour quantifier les changements morphologiques résultant de la croissance neuronale sur des gradients de protéines de guidage. Nous avons produit des milliers de gradients de laminin-1 ayant différentes pentes et analysé les variations au niveau du guidage de neurites provenant d’une lignée cellulaire neuronale (RGC-5). Un algorithme pour analyser les images des cellules sur les gradients a été développé pour détecter chaque cellule et quantifier la position du centroïde du soma ainsi que les angles d’initiation, final et de braquage de chaque neurite. Ces données ont démontré que les gradients de laminine influencent l’angle d’initiation des neurites des RGC-5, mais n’influencent pas leur braquage. Nous croyons que les résultats présentés dans cette thèse faciliteront l’utilisation de motifs de protéines liées au substrat dans les laboratoires des sciences de la vie, puisque LAPAP peut être effectué à l’aide d’un microscope confocal ou d’un microscope standard légèrement modifié. Cela pourrait contribuer à l’augmentation du nombre de laboratoires travaillant sur le guidage avec des gradients liés au substrat afin d’atteindre la masse critique nécessaire à des percées majeures en neuroscience.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Nous y introduisons une nouvelle classe de distributions bivariées de type Marshall-Olkin, la distribution Erlang bivariée. La transformée de Laplace, les moments et les densités conditionnelles y sont obtenus. Les applications potentielles en assurance-vie et en finance sont prises en considération. Les estimateurs du maximum de vraisemblance des paramètres sont calculés par l'algorithme Espérance-Maximisation. Ensuite, notre projet de recherche est consacré à l'étude des processus de risque multivariés, qui peuvent être utiles dans l'étude des problèmes de la ruine des compagnies d'assurance avec des classes dépendantes. Nous appliquons les résultats de la théorie des processus de Markov déterministes par morceaux afin d'obtenir les martingales exponentielles, nécessaires pour établir des bornes supérieures calculables pour la probabilité de ruine, dont les expressions sont intraitables.
Resumo:
Ce mémoire porte sur la présentation des estimateurs de Bernstein qui sont des alternatives récentes aux différents estimateurs classiques de fonctions de répartition et de densité. Plus précisément, nous étudions leurs différentes propriétés et les comparons à celles de la fonction de répartition empirique et à celles de l'estimateur par la méthode du noyau. Nous déterminons une expression asymptotique des deux premiers moments de l'estimateur de Bernstein pour la fonction de répartition. Comme pour les estimateurs classiques, nous montrons que cet estimateur vérifie la propriété de Chung-Smirnov sous certaines conditions. Nous montrons ensuite que l'estimateur de Bernstein est meilleur que la fonction de répartition empirique en terme d'erreur quadratique moyenne. En s'intéressant au comportement asymptotique des estimateurs de Bernstein, pour un choix convenable du degré du polynôme, nous montrons que ces estimateurs sont asymptotiquement normaux. Des études numériques sur quelques distributions classiques nous permettent de confirmer que les estimateurs de Bernstein peuvent être préférables aux estimateurs classiques.
Resumo:
En rivière à lit de graviers, le transport des sédiments en charge de fond est un processus intermittent qui dépend de plusieurs variables du système fluvial dont la prédiction est encore aujourd’hui inexacte. Les modèles disponibles pour prédire le transport par charriage utilisent des variables d’écoulement moyen et la turbulence n’est généralement pas considérée malgré que les tourbillons contenus dans les écoulements possèdent une quantité d’énergie importante. L’utilisation de nouvelles approches pour étudier la problématique du transport par charriage pourrait nous permettre d’améliorer notre connaissance de ce processus déterminant en rivière alluviale. Dans ce mémoire, nous documentons ces composantes de la dynamique fluviale dans un cours d’eau graveleux en période de crue. Les objectifs du projet de recherche sont : 1) d’examiner l’effet du débit sur les variables turbulentes et les caractéristiques des structures turbulentes cohérentes, 2) d’investiguer l’effet du débit sur les caractéristiques des événements de transport de sédiments individuels détectés à l’aide d’un nouvel algorithme développé et testé et 3) de relier les caractéristiques de l’écoulement turbulent aux événements de transport de sédiments individuels. Les données de turbulence montrent qu’à haut niveau d’eau, l’écoulement décéléré est peu cohérent et a une turbulence plus isotrope où les structures turbulentes cohérentes sont de courte durée. Ces observations se distinguent de celles faites à faible niveau d’eau, en écoulement accéléré, où la plus grande cohérence de l’écoulement correspond à ce qui est généralement observé dans les écoulements uniformes en rivières graveleuses. Les distributions de fréquence des variables associées aux événements de transport individuel (intensité de transport moyenne, durée d’événement et intervalle entre événements successifs) ont des formes différentes pour chaque intensité de crue. À haut niveau d’eau, le transport est moins intermittent qu’à faible débit où les événements rares caractérisent davantage les distributions. L’accélération de l’écoulement à petite échelle de temps joue un rôle positif sur le transport, mais surtout lorsque la magnitude de la crue mobilisatrice est en dessous du niveau plein bord. Les résultats de l’étude montrent que les caractéristiques de la turbulence ainsi que les liens complexes entre l’écoulement et le transport par charriage sont fonction du débit.
Resumo:
Notre progiciel PoweR vise à faciliter l'obtention ou la vérification des études empiriques de puissance pour les tests d'ajustement. En tant que tel, il peut être considéré comme un outil de calcul de recherche reproductible, car il devient très facile à reproduire (ou détecter les erreurs) des résultats de simulation déjà publiés dans la littérature. En utilisant notre progiciel, il devient facile de concevoir de nouvelles études de simulation. Les valeurs critiques et puissances de nombreuses statistiques de tests sous une grande variété de distributions alternatives sont obtenues très rapidement et avec précision en utilisant un C/C++ et R environnement. On peut même compter sur le progiciel snow de R pour le calcul parallèle, en utilisant un processeur multicœur. Les résultats peuvent être affichés en utilisant des tables latex ou des graphiques spécialisés, qui peuvent être incorporés directement dans vos publications. Ce document donne un aperçu des principaux objectifs et les principes de conception ainsi que les stratégies d'adaptation et d'extension.
Resumo:
Nous développons dans cette thèse, des méthodes de bootstrap pour les données financières de hautes fréquences. Les deux premiers essais focalisent sur les méthodes de bootstrap appliquées à l’approche de "pré-moyennement" et robustes à la présence d’erreurs de microstructure. Le "pré-moyennement" permet de réduire l’influence de l’effet de microstructure avant d’appliquer la volatilité réalisée. En se basant sur cette ap- proche d’estimation de la volatilité intégrée en présence d’erreurs de microstructure, nous développons plusieurs méthodes de bootstrap qui préservent la structure de dépendance et l’hétérogénéité dans la moyenne des données originelles. Le troisième essai développe une méthode de bootstrap sous l’hypothèse de Gaussianité locale des données financières de hautes fréquences. Le premier chapitre est intitulé: "Bootstrap inference for pre-averaged realized volatility based on non-overlapping returns". Nous proposons dans ce chapitre, des méthodes de bootstrap robustes à la présence d’erreurs de microstructure. Particulièrement nous nous sommes focalisés sur la volatilité réalisée utilisant des rendements "pré-moyennés" proposés par Podolskij et Vetter (2009), où les rendements "pré-moyennés" sont construits sur des blocs de rendements à hautes fréquences consécutifs qui ne se chevauchent pas. Le "pré-moyennement" permet de réduire l’influence de l’effet de microstructure avant d’appliquer la volatilité réalisée. Le non-chevauchement des blocs fait que les rendements "pré-moyennés" sont asymptotiquement indépendants, mais possiblement hétéroscédastiques. Ce qui motive l’application du wild bootstrap dans ce contexte. Nous montrons la validité théorique du bootstrap pour construire des intervalles de type percentile et percentile-t. Les simulations Monte Carlo montrent que le bootstrap peut améliorer les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques, pourvu que le choix de la variable externe soit fait de façon appropriée. Nous illustrons ces méthodes en utilisant des données financières réelles. Le deuxième chapitre est intitulé : "Bootstrapping pre-averaged realized volatility under market microstructure noise". Nous développons dans ce chapitre une méthode de bootstrap par bloc basée sur l’approche "pré-moyennement" de Jacod et al. (2009), où les rendements "pré-moyennés" sont construits sur des blocs de rendements à haute fréquences consécutifs qui se chevauchent. Le chevauchement des blocs induit une forte dépendance dans la structure des rendements "pré-moyennés". En effet les rendements "pré-moyennés" sont m-dépendant avec m qui croît à une vitesse plus faible que la taille d’échantillon n. Ceci motive l’application d’un bootstrap par bloc spécifique. Nous montrons que le bloc bootstrap suggéré par Bühlmann et Künsch (1995) n’est valide que lorsque la volatilité est constante. Ceci est dû à l’hétérogénéité dans la moyenne des rendements "pré-moyennés" au carré lorsque la volatilité est stochastique. Nous proposons donc une nouvelle procédure de bootstrap qui combine le wild bootstrap et le bootstrap par bloc, de telle sorte que la dépendance sérielle des rendements "pré-moyennés" est préservée à l’intérieur des blocs et la condition d’homogénéité nécessaire pour la validité du bootstrap est respectée. Sous des conditions de taille de bloc, nous montrons que cette méthode est convergente. Les simulations Monte Carlo montrent que le bootstrap améliore les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques. Nous illustrons cette méthode en utilisant des données financières réelles. Le troisième chapitre est intitulé: "Bootstrapping realized covolatility measures under local Gaussianity assumption". Dans ce chapitre nous montrons, comment et dans quelle mesure on peut approximer les distributions des estimateurs de mesures de co-volatilité sous l’hypothèse de Gaussianité locale des rendements. En particulier nous proposons une nouvelle méthode de bootstrap sous ces hypothèses. Nous nous sommes focalisés sur la volatilité réalisée et sur le beta réalisé. Nous montrons que la nouvelle méthode de bootstrap appliquée au beta réalisé était capable de répliquer les cummulants au deuxième ordre, tandis qu’il procurait une amélioration au troisième degré lorsqu’elle est appliquée à la volatilité réalisée. Ces résultats améliorent donc les résultats existants dans cette littérature, notamment ceux de Gonçalves et Meddahi (2009) et de Dovonon, Gonçalves et Meddahi (2013). Les simulations Monte Carlo montrent que le bootstrap améliore les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques et les résultats de bootstrap existants. Nous illustrons cette méthode en utilisant des données financières réelles.
Resumo:
Les méthodes de Monte Carlo par chaînes de Markov (MCCM) sont des méthodes servant à échantillonner à partir de distributions de probabilité. Ces techniques se basent sur le parcours de chaînes de Markov ayant pour lois stationnaires les distributions à échantillonner. Étant donné leur facilité d’application, elles constituent une des approches les plus utilisées dans la communauté statistique, et tout particulièrement en analyse bayésienne. Ce sont des outils très populaires pour l’échantillonnage de lois de probabilité complexes et/ou en grandes dimensions. Depuis l’apparition de la première méthode MCCM en 1953 (la méthode de Metropolis, voir [10]), l’intérêt pour ces méthodes, ainsi que l’éventail d’algorithmes disponibles ne cessent de s’accroître d’une année à l’autre. Bien que l’algorithme Metropolis-Hastings (voir [8]) puisse être considéré comme l’un des algorithmes de Monte Carlo par chaînes de Markov les plus généraux, il est aussi l’un des plus simples à comprendre et à expliquer, ce qui en fait un algorithme idéal pour débuter. Il a été sujet de développement par plusieurs chercheurs. L’algorithme Metropolis à essais multiples (MTM), introduit dans la littérature statistique par [9], est considéré comme un développement intéressant dans ce domaine, mais malheureusement son implémentation est très coûteuse (en termes de temps). Récemment, un nouvel algorithme a été développé par [1]. Il s’agit de l’algorithme Metropolis à essais multiples revisité (MTM revisité), qui définit la méthode MTM standard mentionnée précédemment dans le cadre de l’algorithme Metropolis-Hastings sur un espace étendu. L’objectif de ce travail est, en premier lieu, de présenter les méthodes MCCM, et par la suite d’étudier et d’analyser les algorithmes Metropolis-Hastings ainsi que le MTM standard afin de permettre aux lecteurs une meilleure compréhension de l’implémentation de ces méthodes. Un deuxième objectif est d’étudier les perspectives ainsi que les inconvénients de l’algorithme MTM revisité afin de voir s’il répond aux attentes de la communauté statistique. Enfin, nous tentons de combattre le problème de sédentarité de l’algorithme MTM revisité, ce qui donne lieu à un tout nouvel algorithme. Ce nouvel algorithme performe bien lorsque le nombre de candidats générés à chaque itérations est petit, mais sa performance se dégrade à mesure que ce nombre de candidats croît.
Resumo:
L'objectif du présent mémoire vise à présenter des modèles de séries chronologiques multivariés impliquant des vecteurs aléatoires dont chaque composante est non-négative. Nous considérons les modèles vMEM (modèles vectoriels et multiplicatifs avec erreurs non-négatives) présentés par Cipollini, Engle et Gallo (2006) et Cipollini et Gallo (2010). Ces modèles représentent une généralisation au cas multivarié des modèles MEM introduits par Engle (2002). Ces modèles trouvent notamment des applications avec les séries chronologiques financières. Les modèles vMEM permettent de modéliser des séries chronologiques impliquant des volumes d'actif, des durées, des variances conditionnelles, pour ne citer que ces applications. Il est également possible de faire une modélisation conjointe et d'étudier les dynamiques présentes entre les séries chronologiques formant le système étudié. Afin de modéliser des séries chronologiques multivariées à composantes non-négatives, plusieurs spécifications du terme d'erreur vectoriel ont été proposées dans la littérature. Une première approche consiste à considérer l'utilisation de vecteurs aléatoires dont la distribution du terme d'erreur est telle que chaque composante est non-négative. Cependant, trouver une distribution multivariée suffisamment souple définie sur le support positif est plutôt difficile, au moins avec les applications citées précédemment. Comme indiqué par Cipollini, Engle et Gallo (2006), un candidat possible est une distribution gamma multivariée, qui impose cependant des restrictions sévères sur les corrélations contemporaines entre les variables. Compte tenu que les possibilités sont limitées, une approche possible est d'utiliser la théorie des copules. Ainsi, selon cette approche, des distributions marginales (ou marges) peuvent être spécifiées, dont les distributions en cause ont des supports non-négatifs, et une fonction de copule permet de tenir compte de la dépendance entre les composantes. Une technique d'estimation possible est la méthode du maximum de vraisemblance. Une approche alternative est la méthode des moments généralisés (GMM). Cette dernière méthode présente l'avantage d'être semi-paramétrique dans le sens que contrairement à l'approche imposant une loi multivariée, il n'est pas nécessaire de spécifier une distribution multivariée pour le terme d'erreur. De manière générale, l'estimation des modèles vMEM est compliquée. Les algorithmes existants doivent tenir compte du grand nombre de paramètres et de la nature élaborée de la fonction de vraisemblance. Dans le cas de l'estimation par la méthode GMM, le système à résoudre nécessite également l'utilisation de solveurs pour systèmes non-linéaires. Dans ce mémoire, beaucoup d'énergies ont été consacrées à l'élaboration de code informatique (dans le langage R) pour estimer les différents paramètres du modèle. Dans le premier chapitre, nous définissons les processus stationnaires, les processus autorégressifs, les processus autorégressifs conditionnellement hétéroscédastiques (ARCH) et les processus ARCH généralisés (GARCH). Nous présentons aussi les modèles de durées ACD et les modèles MEM. Dans le deuxième chapitre, nous présentons la théorie des copules nécessaire pour notre travail, dans le cadre des modèles vectoriels et multiplicatifs avec erreurs non-négatives vMEM. Nous discutons également des méthodes possibles d'estimation. Dans le troisième chapitre, nous discutons les résultats des simulations pour plusieurs méthodes d'estimation. Dans le dernier chapitre, des applications sur des séries financières sont présentées. Le code R est fourni dans une annexe. Une conclusion complète ce mémoire.