929 resultados para Differential equations, Partial -- Numerical solutions -- Computer programs
Resumo:
The quaternary system Sb1bTe1bBi1bSe with small amounts of suitable dopants is of interest for the manufacture of thermoelectric modules which exhibit the Peltier and Seebeck effects. This property could be useful in the production of energy from the thermoelectric effect. Other substances are bismuth telluride (Bi2Te3) and Sb1bTe1bBi and compounds such as ZnIn2Se4. In the present paper the application of computer programs such as MIGAP of Kaufman is used to indicate the stability of the ternary limits of Sb1bTe1bBi within the temperature ranges of interest, namely 273 K to 300 K.
Resumo:
The solution of the steady laminar incompressible nonsimilar magneto-hydrodynamic boundary layer flow and heat transfer problem with viscous dissipation for electrically conducting fluids over two-dimensional and axisymmetric bodies with pressure gradient and magnetic field has been presented. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The computations have been carried out for flow over a cylinder and a sphere. The results indicate that the magnetic field tends to delay or prevent separation. The heat transfer strongly depends on the viscous dissipation parameter. When the dissipation parameter is positive (i.e. when the temperature of the wall is greater than the freestream temperature) and exceeds a certain value, the hot wall ceases to be cooled by the stream of cooler air because the ‘heat cushion’ provided by the frictional heat prevents cooling whereas the effect of the magnetic field is to remove the ‘heat cushion’ so that the wall continues to be cooled. The results are found to be in good agreement with those of the local similarity and local nonsimilarity methods except near the point of separation, but they are in excellent agreement with those of the difference-differential technique even near the point of separation.
Resumo:
The solution of the steady laminar incompressible nonsimilar boundary-layer problem for micropolar fluids over two-dimensional and axisymmetric bodies has been presented. The partial differential equations governing the flow have been transformed into new co-ordinates having finite range. The resulting equations have been solved numerically using implicit finite-difference scheme. The computations have been carried out for a cylinder and a sphere. The results indicate that the separation in micropolar fluids occurs at earlier streamwise locations as compared to Newtonian fluids. The skin friction and velocity profiles depend on the shape of the body and are almost insensitive to microrotation or coupling parameter, provided the coupling parameter is small. On the other hand, the microrotation profiles and microrotation gradient depend on the microrotation parameter and they are insensitive to the coupling parameter.
Resumo:
The problem of decoupling a class of non-linear two degrees of freedom systems is studied. The coupled non-linear differential equations of motion of the system are shown to be equivalent to a pair of uncoupled equations. This equivalence is established through transformation techniques involving the transformation of both the dependent and independent variables. The sufficient conditions on the form of the non-linearity, for the case wherein the transformed equations are linear, are presented. Several particular cases of interest are also illustrated.
Resumo:
The effect of vectored mass transfer on the flow and heat transfer of the steady laminar incompressible nonsimilar boundary layer with viscous dissipation for two-dimensional and axisymmetric porous bodies with pressure gradient has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The computations have been carried out for a cylinder and a sphere. The skin friction is strongly influenced by the vectored mass transfer, and the heat transfer both by the vectored mass transfer and dissipation parameter. It is observed that the vectored suction tends to delay the separation whereas the effect of the vectored injection is just the reverse. Our results agree with those of the local nonsimilarity, difference-differential and asymptotic methods but not with those of the local similarity method.
Resumo:
The flow, heat and mass transfer problem for boundary layer swirling flow of a laminar steady compressible electrically conducting gas with variable properties through a conical nozzle and a diffuser with an applied magnetic field has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme after they have been transformed into dimensionless form using the modified Lees transformation. The results indicate that the skin friction and heat transfer strongly depend on the magnetic field, mass transfer and variation of the density-viscosity product across the boundary layer. However, the effect of the variation of the density-viscosity product is more pronounced in the case of a nozzle than in the case of a diffuser. It has been found that large swirl is required to produce strong effect on the skin friction and heat transfer. Separationless flow along the entire length of the diffuser can be obtained by applying appropriate amount of suction. The results are found to be in good agreement with those of the local nonsimilarity method, but they differ quite significantly from those of the local similarity method.
Resumo:
The unsteady laminar incompressible boundary-layer flow near the three-dimensional asymmetric stagnation point has been studied under the assumptions that the free-stream velocity, wall temperature, and surface mass transfer vary arbitrarily with time. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. It is found that in contrast with the symmetric flow, the maximum heat transfer occurs away from the stagnation point due to the decrease in the boundary-layer thickness. The effect of the variation of the wall temperature with time on heat transfer is strong. The skin friction and heat transfer due to asymmetric flow only are comparatively less affected by the mass transfer as compared to those of symmetric flow.
Resumo:
This paper reports a numerical study of the laminar conjugate natural convection heat transfer with and without the interaction of the surface radiation in a horizontal cylindrical annulus formed between an inner heat generating solid circular cylinder and an outer isothermal circular boundary. Numerical solutions are obtained by solving the governing equations with a pressure correction method on a collocated (non-staggered) mesh. Steady-state results are presented for the flow and temperature distributions and Nusselt numbers for the heat generation based Grashof number ranging from 10(7) to 10(10), solid-to-fluid thermal conductivity ratios of 1, 5, 10, 50 and 100, radius ratios of 0.226 and 0.452 and surface emissivities of 0-0.8 with air as the working medium. It is observed that surface radiation reduces the convective heat transfer in the annulus compared to the pure natural convection case and enhances the overall Nusselt number.
Resumo:
It is shown that pure exponential discs in spiral galaxies are capable of supporting slowly varying discrete global lopsided modes, which can explain the observed features of lopsidedness in the stellar discs. Using linearized fluid dynamical equations with the softened self-gravity and pressure of the perturbation as the collective effect, we derive self-consistently a quadratic eigenvalue equation for the lopsided perturbation in the galactic disc. On solving this, we find that the ground-state mode shows the observed characteristics of the lopsidedness in a galactic disc, namely the fractional Fourier amplitude A(1), increases smoothly with the radius. These lopsided patterns precess in the disc with a very slow pattern speed with no preferred sense of precession. We show that the lopsided modes in the stellar disc are long-lived because of a substantial reduction (approximately a factor of 10 compared to the local free precession rate) in the differential precession. The numerical solution of the equations shows that the groundstate lopsided modes are either very slowly precessing stationary normal mode oscillations of the disc or growing modes with a slow growth rate depending on the relative importance of the collective effect of the self-gravity. N-body simulations are performed to test the spontaneous growth of lopsidedness in a pure stellar disc. Both approaches are then compared and interpreted in terms of long-lived global m = 1 instabilities, with almost zero pattern speed.
Resumo:
The unsteady mixed convection flow of an incompressible laminar electrically conducting fluid over an impulsively stretched permeable vertical surface in an unbounded quiescent fluid in the presence of a transverse magnetic field has been investigated. At the same time, the surface temperature is suddenly increased from the surrounding fluid temperature or a constant heat flux is suddenly imposed on the surface. The problem is formulated in such a way that for small time it is governed by Rayleigh type of equation and for large time by Crane type of equation. The non-linear coupled parabolic partial differential equations governing the unsteady mixed convection flow under boundary layer approximations have been solved analytically by using the homotopy analysis method as well as numerically by an implicit finite difference scheme. The local skin friction coefficient and the local Nusselt number are found to decrease rapidly with time in a small time interval and they tend to steady-state values for t* >= 5. They also increase with the buoyancy force and suction, but decrease with injection rate. The local skin friction coefficient increases with the magnetic field, but the local Nusselt number decreases. There is a smooth transition from the unsteady state to the steady state. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An analysis is performed to study the unsteady combined forced and free convection flow (mixed convection flow) of a viscous incompressible electrically conducting fluid in the vicinity of an axisymmetric stagnation point adjacent to a heated vertical surface. The unsteadiness in the flow and temperature fields is due to the free stream velocity, which varies arbitrarily with time. Both constant wall temperature and constant heat flux conditions are considered in this analysis. By using suitable transformations, the Navier-Stokes and energy equations with four independent variables (x, y, z, t) are reduced to a system of partial differential equations with two independent variables (eta, tau). These transformations also uncouple the momentum and energy equations resulting in a primary axisymmetric flow, in an energy equation dependent on the primary flow and in a buoyancy-induced secondary flow dependent on both primary flow and energy. The resulting system of partial differential equations has been solved numerically by using both implicit finite-difference scheme and differential-difference method. An interesting result is that for a decelerating free stream velocity, flow reversal occurs in the primary flow after certain instant of time and the magnetic field delays or prevents the flow reversal. The surface heat transfer and the surface shear stress in the primary flow increase with the magnetic field, but the surface shear stress in the buoyancy-induced secondary flow decreases. Further the heat transfer increases with the Prandtl number, but the surface shear stress in the secondary flow decreases.
Resumo:
A new mathematical model for the solution of the problem of free convection heat transfer between vertical parallel flat isothermal plates under isothermal boundary conditions, has been presented. The set of boundary layer equations used in the model are transformed to nonlinear coupled differential equations by similarity type variables as obtained by Ostrach for vertical flat plates in an infinite fluid medium. By utilising a parameter ηw* to represent the outer boundary, the governing differential equations are solved numerically for parametric values of Pr = 0.733. 2 and 3, and ηw* = 0.1, 0.5, 1, 2, 3, 4, ... and 8.0. The velocity and temperature profiles are presented. Results indicate that ηw* can effectively classify the system into (1) thin layers where conduction predominates, (2) intermediate layers and (3) thick layers whose results can be predicted by the solutions for vertical flat plates in infinite fluid medium. Heat transfer correlations are presented for the 3 categories. Several experimental and analytical results available in the literature agree with the present correlations.
Resumo:
In recent years a large number of investigators have devoted their efforts to the study of flow and heat transfer in rarefied gases, using the BGK [1] model or the Boltzmann kinetic equation. The velocity moment method which is based on an expansion of the distribution function as a series of orthogonal polynomials in velocity space, has been applied to the linearized problem of shear flow and heat transfer by Mott-Smith [2] and Wang Chang and Uhlenbeck [3]. Gross, Jackson and Ziering [4] have improved greatly upon this technique by expressing the distribution function in terms of half-range functions and it is this feature which leads to the rapid convergence of the method. The full-range moments method [4] has been modified by Bhatnagar [5] and then applied to plane Couette flow using the B-G-K model. Bhatnagar and Srivastava [6] have also studied the heat transfer in plane Couette flow using the linearized B-G-K equation. On the other hand, the half-range moments method has been applied by Gross and Ziering [7] to heat transfer between parallel plates using Boltzmann equation for hard sphere molecules and by Ziering [83 to shear and heat flow using Maxwell molecular model. Along different lines, a moment method has been applied by Lees and Liu [9] to heat transfer in Couette flow using Maxwell's transfer equation rather than the Boltzmann equation for distribution function. An iteration method has been developed by Willis [10] to apply it to non-linear heat transfer problems using the B-G-K model, with the zeroth iteration being taken as the solution of the collisionless kinetic equation. Krook [11] has also used the moment method to formulate the equivalent continuum equations and has pointed out that if the effects of molecular collisions are described by the B-G-K model, exact numerical solutions of many rarefied gas-dynamic problems can be obtained. Recently, these numerical solutions have been obtained by Anderson [12] for the non-linear heat transfer in Couette flow,
Resumo:
The scope of application of Laplace transforms presently limited to the study of linear partial differential equations, is extended to the nonlinear domain by this study. This has been achieved by modifying the definition of D transforms, put forth recently for the study of classes of nonlinear lumped parameter systems. The appropriate properties of the new D transforms are presented to bring out their applicability in the analysis of nonlinear distributed parameter systems.
Resumo:
The interaction between large deflections, rotation effects and unsteady aerodynamics makes the dynamic analysis of rotating and flapping wing a nonlinear aeroelastic problem. This problem is governed by nonlinear periodic partial differential equations whose solution is needed to calculate the response and loads acting on vehicles using rotary or flapping wings for lift generation. We look at three important problems in this paper. The first problem shows the effect of nonlinear phenomenon coming from piezoelectric actuators used for helicopter vibration control. The second problem looks at the propagation on material uncertainty on the nonlinear response, vibration and aeroelastic stability of a composite helicopter rotor. The third problem considers the use of piezoelectric actuators for generating large motions in a dragonfly inspired flapping wing. These problems provide interesting insights into nonlinear aeroelasticity and show the likelihood of surprising phenomenon which needs to be considered during the design of rotary and flapping wing vehicle