997 resultados para DEPTH DOSE DISTRIBUTIONS
Resumo:
BACKGROUND: : A primary goal of clinical pharmacology is to understand the factors that determine the dose-effect relationship and to use this knowledge to individualize drug dose. METHODS: : A principle-based criterion is proposed for deciding among alternative individualization methods. RESULTS: : Safe and effective variability defines the maximum acceptable population variability in drug concentration around the population average. CONCLUSIONS: : A decision on whether patient covariates alone are sufficient, or whether therapeutic drug monitoring in combination with target concentration intervention is needed, can be made by comparing the remaining population variability after a particular dosing method with the safe and effective variability.
Resumo:
An experimental method of studying shifts between concentration-versus-depth profiles of vacancy- and interstitial-type defects in ion-implanted silicon is demonstrated. The concept is based on deep level transient spectroscopy measurements utilizing the filling pulse variation technique. The vacancy profile, represented by the vacancy¿oxygen center, and the interstitial profile, represented by the interstitial carbon¿substitutional carbon pair, are obtained at the same sample temperature by varying the duration of the filling pulse. The effect of the capture in the Debye tail has been extensively studied and taken into account. Thus, the two profiles can be recorded with a high relative depth resolution. Using low doses, point defects have been introduced in lightly doped float zone n-type silicon by implantation with 6.8 MeV boron ions and 680 keV and 1.3 MeV protons at room temperature. The effect of the angle of ion incidence has also been investigated. For all implantation conditions the peak of the interstitial profile is displaced towards larger depths compared to that of the vacancy profile. The amplitude of this displacement increases as the width of the initial point defect distribution increases. This behavior is explained by a simple model where the preferential forward momentum of recoiling silicon atoms and the highly efficient direct recombination of primary point defects are taken into account.
Resumo:
The microstructural and optical analysis of SiO2 layers emitting white luminescence is reported. These structures have been synthesized by sequential Si+ and C+ ion implantation and high-temperature annealing. Their white emission results from the presence of up to three bands in the photoluminescence (PL) spectra, covering the whole visible spectral range. The microstructural characterization reveals the presence of a complex multilayer structure: Si nanocrystals are only observed outside the main C-implanted peak region, with a lower density closer to the surface, being also smaller in size. This lack of uniformity in their density has been related to the inhibiting role of C in their growth dynamics. These nanocrystals are responsible for the band appearing in the red region of the PL spectrum. The analysis of the thermal evolution of the red PL band and its behavior after hydrogenation shows that carbon implantation also prevents the formation of well passivated Si/SiO2 interfaces. On the other hand, the PL bands appearing at higher energies show the existence of two different characteristics as a function of the implanted dose. For excess atomic concentrations below or equal to 10%, the spectra show a PL band in the blue region. At higher doses, two bands dominate the green¿blue spectral region. The evolution of these bands with the implanted dose and annealing time suggests that they are related to the formation of carbon-rich precipitates in the implanted region. Moreover, PL versus depth measurements provide a direct correlation of the green band with the carbon-implanted profile. These PL bands have been assigned to two distinct amorphous phases, with a composition close to elemental graphitic carbon or stoichiometric SiC.
Resumo:
The pharmacokinetics (PK) of efavirenz (EFV) is characterized by marked interpatient variability that correlates with its pharmacodynamics (PD). In vitro-in vivo extrapolation (IVIVE) is a "bottom-up" approach that combines drug data with system information to predict PK and PD. The aim of this study was to simulate EFV PK and PD after dose reductions. At the standard dose, the simulated probability was 80% for viral suppression and 28% for central nervous system (CNS) toxicity. After a dose reduction to 400 mg, the probabilities of viral suppression were reduced to 69, 75, and 82%, and those of CNS toxicity were 21, 24, and 29% for the 516 GG, 516 GT, and 516 TT genotypes, respectively. With reduction of the dose to 200 mg, the probabilities of viral suppression decreased to 54, 62, and 72% and those of CNS toxicity decreased to 13, 18, and 20% for the 516 GG, 516 GT, and 516 TT genotypes, respectively. These findings indicate how dose reductions might be applied in patients with favorable genetic characteristics.
Resumo:
A configurational model for silicon oxide damaged after a high-dose ion implantation of a nonreactive species is presented. Based on statistics of silicon-centered tetrahedra, the model takes into account not only the closest environment of a given silicon atom, but also the second neighborhood, so it is specified whether the oxygen attached to one given silicon is bridging two tetrahedra or not. The frequencies and intensities of infrared vibrational bands have been calculated by averaging over the distributions and these results are in agreement with the ones obtained from infrared experimental spectra. Likewise, the chemical shifts obtained from x-ray photoelectron spectroscopy (XPS) analysis are similar to the reported values for the charge-transfer model of SiOx compounds.
Resumo:
A microstructural analysis of silicon-on-insulator samples obtained by high dose oxygen ion implantation was performed by Raman scattering. The samples analyzed were obtained under different conditions thus leading to different concentrations of defects in the top Si layer. The samples were implanted with the surface covered with SiO2 capping layers of different thicknesses. The spectra measured from the as-implanted samples were fitted to a correlation length model taking into account the possible presence of stress effects in the spectra. This allowed quantification of both disorder effects, which are determined by structural defects, and residual stress in the top Si layer before annealing. These data were correlated to the density of dislocations remaining in the layer after annealing. The analysis performed corroborates the existence of two mechanisms that generate defects in the top Si layer that are related to surface conditions during implantation and the proximity of the top Si/buried oxide layer interface to the surface before annealing.
Resumo:
Phase sensitive X-ray imaging methods can provide substantially increased contrast over conventional absorption-based imaging and therefore new and otherwise inaccessible information. The use of gratings as optical elements in hard X-ray phase imaging overcomes some of the problems that have impaired the wider use of phase contrast in X-ray radiography and tomography. So far, to separate the phase information from other contributions detected with a grating interferometer, a phase-stepping approach has been considered, which implies the acquisition of multiple radiographic projections. Here we present an innovative, highly sensitive X-ray tomographic phase-contrast imaging approach based on grating interferometry, which extracts the phase-contrast signal without the need of phase stepping. Compared to the existing phase-stepping approach, the main advantages of this new method dubbed "reverse projection" are not only the significantly reduced delivered dose, without the degradation of the image quality, but also the much higher efficiency. The new technique sets the prerequisites for future fast and low-dose phase-contrast imaging methods, fundamental for imaging biological specimens and in vivo studies.
Resumo:
LRH and its agonists have been shown to exert both stimulatory and inhibitory effects on testicular function. In the present study, the dose and length of treatment were tested to determine the appearance of the stimulatory and inhibitory effects of LRH agonist on testicular axis including the three levels. Two doses of an agonist of LRH, 40 and 100 ng/100 g body weight (buserelin, 'agonist'), were administered daily for 1 to 15 days to adult male rats. Control rats received the vehicle only. On day 1, 2, 4, 8 and 15 of treatment, the pituitary, testicular and peripheral levels (weight of accessory sex organs and androgen receptors in ventral prostate) were tested 6 h after the last injection. For the 15 days of treatment with both doses, a stimulatory effect of the 'agonist' was observed on LH and FSH release. A short exposure (1-2 days) to the low dose of the 'agonist' had a stimulatory effect on the density of LH/hCG testicular receptors (326 +/- 49 vs control 185 +/- 21 fmol/mg protein, mean +/- SEM), on the weights of seminal vesicles and ventral prostate and exposure to both doses led to high plasma testosterone levels (13.8 +/- 0.5 and 13.7 +/- 0.7 ng/ml, respectively, vs control 2.6 +/- 0.3 ng/ml), and to an increased density of nuclear androgen receptors in the ventral prostate (142 +/- 9 and 144 +/- 15 fmol/mg protein respectively vs control 97 +/- 12 fmol/mg protein).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Microbial activity and biochemical properties are important indicators of the impact of organic composting on soil. The objective of this study was to evaluate some indicators of soil microbial and biochemical processes after application of compost (household waste). A Typic Acrustox, sampled at a depth of 10 cm under Cerrado biome vegetation, was evaluated in three treatments: control (soil without organic compost amendment) and soil with two doses of domestic organic compost (10 and 20 g kg-1 soil). The following properties were evaluated: released C (C-CO2): microbial respiration 15 days after incubation; microbial biomass C (MBC); total glucose (TG); metabolic quotient (qCO2); and enzyme activity of β-glucosidase and acid and alkaline phosphatase. The application of household compost, at doses of 10 and 20 g kg-1 Typic Acrustox, resulted in significant gains in microbial activity, organic C and C stock, as evidenced by increased MBC and TG levels. On the other hand, qCO2 decreases indicated greater microbial diversity and more efficient energy use. The addition of compost, particularly the 20 g kg-1 dose, strongly influenced the enzyme β-glucosidase and phosphatase (acid and alkaline). The β-glucosidase activity was significantly increased and acid phosphatase activity increased more than the alkaline. The ratio of β-glucosidase to MBC was greater in the control than in the composted treatments which suggests that there were more enzymes in the control than in the substrate or that the addition of compost induced a great MBC increase.
Resumo:
O nitrogênio é um dos elementos de grande impacto na produtividade da batata, e seu efeito nas plantas pode ser avaliado por meio de técnicas de diagnóstico do estado nutricional. Este trabalho teve o objetivo de determinar a dose ótima econômica de N para a produção de tubérculos e estimar o nível crítico de índices do estado de N na folha de duas cultivares de batata. O experimento foi conduzido de maio a agosto de 2008, em delineamento em blocos ao acaso em esquema fatorial 4 x 2, sendo quatro doses de N (0, 100, 200 e 400 kg ha-1 de N, aplicadas em pré-plantio como ureia) e duas cultivares de batata (Ágata e Asterix), com quatro repetições. Aos 21 dias após a emergência foram determinadas a leitura SPAD e os teores de N e de clorofila na quarta folha a partir do ápice (QF). A produtividade de tubérculos comerciais aumentou até 45.065 e 46.500 kg ha-1 com o aumento da dose de N até 297 e 250 kg ha-1 para Ágata e Asterix, respectivamente. Para essas cultivares, a dose para obtenção da máxima eficiência econômica foi de 290 e 245 kg ha-1 de N, respectivamente. Nas duas cultivares, houve efeito positivo de doses de N sobre o índice SPAD e teores de N e de clorofila na QF. Os valores críticos foram de 40,5 e 43,7 para o índice SPAD, de 66,7 e 75,2 g kg-1 para o teor foliar de N e de 6,13 e 6,96 mg g-1 para o teor de clorofila total na matéria fresca das folhas, respectivamente, para Ágata e Asterix. Os valores da leitura do índice SPAD correlacionaram-se com os valores de clorofila total extraível na quarta folha e com a produção de tubérculos de batata, indicando a possibilidade de medir o valor SPAD aos 21 DAE para prognosticar a produtividade de tubérculos de batata.
Resumo:
BACKGROUND: Polyomavirus-associated nephropathy (PVAN) is a serious complication and cause of graft loss in kidney transplant recipients. In the absence of specific antiviral drugs, early detection of the disease and reduction of immunosuppressive regimen is the cornerstone of therapy. Cidofovir, a nucleoside analogue, has been found to inhibit BK virus (BKV) replication in vitro and has been proposed as treatment of refractory PVAN at low doses; however, its efficacy has never been demonstrated in randomized controlled trials. METHODS: Cidofovir therapy (0.5 mg/kg at a 2-week interval for eight consecutive doses) was initiated in two patients with biopsy-proven PVAN and persistent BKV DNA viraemia (> or = 10,000 copies/ml despite sustained reduction of the immunosuppressive regimen). In addition to these two case reports, we performed a critical review of the literature on the use of cidofovir in PVAN. RESULTS: No significant decrease of BKV viral load in blood was observed during cidofovir therapy and in follow-up of the two patients treated with cidofovir. Our literature review identified 21 publications reporting the use of cidofovir for the treatment of PVAN. All were case reports or small series. The efficacy of cidofovir therapy could not be assessed in 17 of these publications because of lack of data or concomitant reduction of immunosuppressive regimen. The four remaining publications were case reports. CONCLUSIONS: In vitro and clinical data to support the efficacy of cidofovir in the treatment of PVAN are currently lacking. More promising compounds should be identified for further clinical studies.