971 resultados para Cyanobacteria -- Biodegradation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Im Genom des Cyanobakteriums Synechocystis sp. PCC6803 sind vier homologe Hsp70-Proteine kodiert. Im Rahmen dieser Arbeit konnten neue Erkenntnisse über die möglichen Funktionen der einzelnen Mitglieder der Hsp70-Proteinfamilie in dem Modellorganismus gewonnen bzw. bekannte Aufgabenbereiche erweitert werden. Wie für E. coli schon gezeigt, konnte auch für Synechocystis sp. nachgewiesen werden, dass eine Deletion des ribosomassoziierten Chaperons Trigger Factor ohne Beeinträchtigung der Zellviabilität möglich ist. Darüber hinaus war auch eine Doppeldeletion mit dnaK1 durchführbar. Als Auswirkung der Deletion ließ sich in den jeweiligen Deletionsstämmen eine veränderte Expression der homologen Hsp70-Proteine und Trigger Factor nachweisen. Mit Hilfe der Synechocystis sp.-Mutationsstämme ∆dnaK1, ∆dnaK2, ∆dnaK3, ∆tig und ∆dnaK1∆tig wurden Auswirkungen der Deletion bzw. Depletion umfassend dargestellt und daraus hervorgehende putative Funktionen eingehend diskutiert. Die Reduzierung der zellulären DnaK3-Konzentration um etwa 70 % führte im Depletionsstamm ΔdnaK3 zu weitreichenden physiologischen Änderungen hinsichtlich photosynthetischer Prozesse. Zusammen mit einer lichtabhängigen Expression, konnte DnaK3 als essentieller Faktor für die funktionelle Aufrechterhaltung der Thylakoidmembran identifiziert werden. Durch die Analyse des Proteoms und Lipidoms dunkeladaptierter Synechocystis sp.-Zellen konnte im Vergleich zu älteren Studien eine erheblich größere Anzahl von Proteinen detektiert und quantifiziert werden, womit neue Erkenntnisse über die physiologischen Veränderungen unter heterotrophem Wachstum sowie der Thylakoidmembranbiogenese gewonnen werden konnten.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-dimensional electron microscopy (3-D EM) provides a framework for the analysis of large protein quaternary structures. The advantage over the generally higher resolving meth- od of X-ray crystallography is the embedding of the proteins in their physiological environ- ment. However, results of the two methods can be combined to obtain superior structural information. In this work, three different protein types – (i) Myriapod hemocyanin, (ii) vesi- cle-inducing protein in plastids 1 (Vipp1) and (iii) acetylcholine-binding protein (AChBP) – were structurally analyzed by 2-D and 3-D EM and, where possible, functionally interpreted.rnMyriapod hemocyanins have been previously shown to be 6x6-meric assemblies that, in case of Scutigera coleoptrata hemocyanin (ScoHc), show two 3x6-mer planes whith a stag- gering angle of approximately 60°. Here, previously observed structural differences between oxy- and deoxy-ScoHc could be substantiated. A 4° rotation between hexamers of two dif- ferent 3x6-mer planes was measured, which originates at the most central inter-hexamer in- terface. Further information about allosteric behaviour in myriapod hemocyanin was gained by analyzing Polydesmus angustus hemocyanin (PanHc), which shows a stable 3x6-mer and divergent histidine patterns in the inter-hexamer interfaces when compared to ScoHc. Both findings would conclusively explain the very different oxygen binding properties of chilopod and diplopod hemocyanin.rnVipp1 is a protein found in cyanobacteria and higher plants which is essential for thyla- koid membrane function and forms highly variable ring-shaped structures. In the course of this study, the first 3-D analysis of Vipp1 was conducted and yielded reconstructions of six differently sized Vipp1 rings from negatively stained images at resolutions between 20 to 30 Å. Furthermore, mutational analyses identified specific N-terminal amino acids that are essential for ring formation. On the basis of these analyses and previously published results, a hypothetical model of the Vipp1 tertiary and quaternary structure was generated.rnAChBP is a water-soluble protein in the hemolymph of mollusks. It is a structural and functional homologue of the ligand-binding domain of nicotinic acetylcholine receptors. For the freshwater snail Biomphalaria glabrata, we previously described two types of AChBP (BgAChBP1 and BgAChBP2). In this work, a 6 Å 3-D reconstruction of native BgAChBP is presented, which shows a dodecahedral assembly that is unprecedented for an AChBP. Single particle analysis of recombinantely expressed BgAChBP types led to preliminary results show- ing a dodecahedral assembly of BgAChBP1 and a dipentameric assembly of BgAChBP2. This indicates divergent biological functions of the two types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: The aim of the present study was to histologically evaluate and compare a new prototype collagen type I/III-containing equine- (EB) and a bovine- (BB) derived cancellous bone block in a dog model. MATERIALS AND METHODS: Four standardized box-shaped defects were bilaterally created at the buccal aspect of the alveolar ridge in the lower jaws of five beagle dogs and randomly allocated to either EB or BB. Each experimental site was covered by a native (non-crosslinked) collagen membrane and left to heal in a submerged position for 12 weeks. Dissected blocks were processed for semi-/and quantitative analyses. RESULTS: Both groups had no adverse clinical or histopathological events (i.e. inflammatory/foreign body reactions). BB specimens revealed no signs of biodegradation and were commonly embedded in a fibrous connective tissue. New bone formation and bony graft integration were minimal. In contrast, EB specimens were characterized by a significantly increased cell (i.e. osteoclasts and multinucleated giant cells)-mediated degradation of the graft material (P<0.001). The amount and extent of bone ingrowth was consistently higher in all EB specimens, but failed to reach statistical significance in comparison with the BB group (P>0.05). CONCLUSIONS: It was concluded that the application of EB may not be associated with an improved bone formation than BB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Premature collagen membrane degradation may compromise the outcome of osseous regenerative procedures. Tetracyclines (TTCs) inhibit the catalytic activities of human metalloproteinases. Preprocedural immersion of collagen membranes in TTC and systemic administration of TTC may be possible alternatives to reduce the biodegradation of native collagen membranes. AIM: To evaluate the in vivo degradation of collagen membranes treated by combined TTC immersion and systemic administration. MATERIALS AND METHODS: Seventy-eight bilayered porcine collagen membrane disks were divided into three groups and were immersed in 0, 50, or 100 mg/mL TTC solution. Three disks, one of each of the three groups, were implanted on the calvaria of each of 26 Wistar rats. Thirteen (study group) were administered with systemic TTC (10 mg/kg), while the remaining 13 received saline injections (control group). Calvarial tissues were retrieved after 3 weeks, and histological sections were analyzed by image analysis software. RESULTS: Percentage of remaining collagen area within nonimpregnated membranes was 52.26 ± 20.67% in the study group, and 32.74 ± 13.81% in the control group. Immersion of membranes in 100 mg/mL TTC increased the amount of residual collagen to 63.46 ± 18.19% and 42.82 ± 12.99% (study and control groups, respectively). Immersion in 50 mg/mL TTC yielded maximal residual collagen values: 80.75 ± 14.86% and 59.15 ± 8.01% (study and control groups, respectively). Differences between the TTC concentrations, and between the control and the study groups were statistically significant. CONCLUSIONS: Immersion of collagen membranes in TTC solution prior to their implantation and systemic administration of TTC significantly decreased the membranes' degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives This study sought to investigate safety and efficacy of biolimus-eluting stents (BES) with biodegradable polymer as compared with sirolimus-eluting stents (SES) with durable polymer through 2 years of follow-up. Background BES with a biodegradable polymer provide similar efficacy and safety as SES with a durable polymer at 9 months. Clinical outcomes beyond the period of biodegradation of the polymer used for drug release and after discontinuation of dual antiplatelet therapy are of particular interest. Methods A total of 1,707 patients were randomized to unrestricted use of BES (n = 857) or SES (n = 850) in an all-comers patient population. Results At 2 years, BES remained noninferior compared with SES for the primary endpoint, which was a composite of cardiac death, myocardial infarction, or clinically indicated target vessel revascularization (BES 12.8% vs. SES 15.2%, hazard ratio [HR]: 0.84, 95% confidence interval [CI]: 0.65 to 1.08, pnoninferiority < 0.0001, psuperiority = 0.18). Rates of cardiac death (3.2% vs. 3.9%, HR: 0.81, 95% CI: 0.49 to 1.35, p = 0.42), myocardial infarction (6.3% vs. 5.6%, HR: 1.12, 95% CI: 0.76 to 1.65, p = 0.56), and clinically indicated target vessel revascularization (7.5% vs. 8.6%, HR: 0.86, 95% CI: 0.62 to 1.20, p = 0.38) were similar for BES and SES. The rate of definite stent thrombosis through 2 years was 2.2% for BES and 2.5% for SES (p = 0.73). For the period between 1 and 2 years, event rates for definite stent thrombosis were 0.2% for BES and 0.5% for SES (p = 0.42). After discontinuation of dual antiplatelet therapy, no very late definite stent thrombosis occurred in the BES group. Conclusions At 2 years of follow-up, the unrestricted use of BES with a biodegradable polymer maintained a similar safety and efficacy profile as SES with a durable polymer. (Limus Eluted From a Durable Versus Erodable Stent Coating [LEADERS]; NCT00389220)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyanobacteria are photosynthetic organisms that require the absorption of light for the completion of photosynthesis. Cyanobacteria can use a variety of wavelengths of light within thevisible light spectrum in order to harvest energy for this process. Many species of cyanobacteria have light-harvesting proteins that specialize in the absorption of a small range of wavelengths oflight along the visual light spectrum; others can undergo complementary chromatic adaptation and alter these light-harvesting proteins in order to absorb the wavelengths of light that are mostavailable in a given environment. This variation in light-harvesting phenotype across cyanobacteria leads to the utilization of environmental niches based on light wavelength availability. Furthermore, light attenuation along the water column in an aquatic system also leads to the formation of environmental niches throughout the vertical water column. In order to better understand these niches based on light wavelength availability, we studied the compositionof cyanobacterial genera at the surface and depth of Lake Chillisquaque at three time points throughout the year: September 2009, May 2010, and July 2010. We found that cyanobacterialgenera composition changes throughout the year as well as with physical location in the water column. Additionally, given the light attenuation noted throughout the Lake Chillisquaque, we are able to conclude that light is a major selective factor in the community composition of Lake Chillisquaque.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive transport modelling was used to simulate solute transport, thermodynamic reactions, ion exchange and biodegradation in the Porewater Chemistry (PC) experiment at the Mont Terri Rock Laboratory. Simulations show that the most important chemical processes controlling the fluid composition within the borehole and the surrounding formation during the experiment are ion exchange, biodegradation and dissolution/precipitation reactions involving pyrite and carbonate minerals. In contrast, thermodynamic mineral dissolution/precipitation reactions involving alumo-silicate minerals have little impact on the fluid composition on the time-scale of the experiment. With the accurate description of the initial chemical condition in the formation in combination with kinetic formulations describing the different stages of bacterial activities, it has been possible to reproduce the evolution of important system parameters, such as the pH, redox potential, total organic C. dissolved inorganic C and SO(4) concentration. Leaching of glycerol from the pH-electrode may be the primary source of organic material that initiated bacterial growth, which caused the chemical perturbation in the borehole. Results from these simulations are consistent with data from the over-coring and demonstrate that the Opalinus Clay has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. This buffering capacity can be attributed to the carbonate system as well as to the reactivity of clay surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The time course of lake recovery after a reduction in external loading of nutrients is often controlled by conditions in the sediment. Remediation of eutrophication is hindered by the presence of legacy organic carbon deposits, that exert a demand on the terminal electron acceptors of the lake and contribute to problems such as internal nutrient recycling, absence of sediment macrofauna, and flux of toxic metal species into the water column. Being able to quantify the timing of a lake’s response requires determination of the magnitude and lability, i.e., the susceptibility to biodegradation, of the organic carbon within the legacy deposit. This characterization is problematic for organic carbon in sediments because of the presence of different fractions of carbon, which vary from highly labile to refractory. The lability of carbon under varied conditions was tested with a bioassay approach. It was found that the majority of the organic material found in the sediments is conditionally-labile, where mineralization potential is dependent on prevailing conditions. High labilities were noted under oxygenated conditions and a favorable temperature of 30 °C. Lability decreased when oxygen was removed, and was further reduced when the temperature was dropped to the hypolimnetic average of 8° C . These results indicate that reversible preservation mechanisms exist in the sediment, and are able to protect otherwise labile material from being mineralized under in situ conditions. The concept of an active sediment layer, a region in the sediments in which diagenetic reactions occur (with nothing occurring below it), was examined through three lines of evidence. Initially, porewater profiles of oxygen, nitrate, sulfate/total sulfide, ETSA (Electron Transport System Activity- the activity of oxygen, nitrate, iron/manganese, and sulfate), and methane were considered. It was found through examination of the porewater profiles that the edge of diagenesis occurred around 15-20 cm. Secondly, historical and contemporary TOC profiles were compared to find the point at which the profiles were coincident, indicating the depth at which no change has occurred over the (13 year) interval between core collections. This analysis suggested that no diagenesis has occurred in Onondaga Lake sediment below a depth of 15 cm. Finally, the time to 99% mineralization, the t99, was viewed by using a literature estimate of the kinetic rate constant for diagenesis. A t99 of 34 years, or approximately 30 cm of sediment depth, resulted for the slowly decaying carbon fraction. Based on these three lines of evidence , an active sediment layer of 15-20 cm is proposed for Onondaga Lake, corresponding to a time since deposition of 15-20 years. While a large legacy deposit of conditionally-labile organic material remains in the sediments of Onondaga Lake, it becomes clear that preservation, mechanisms that act to shield labile organic carbon from being degraded, protects this material from being mineralized and exerting a demand on the terminal electron acceptors of the lake. This has major implications for management of the lake, as it defines the time course of lake recovery following a reduction in nutrient loading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate pharmacokinetics of ketamine and norketamine enantiomers after constant rate infusion (CRI) of a subanesthetic dose of racemic ketamine or S-ketamine in ponies. ANIMALS: Five 6-year-old Shetland pony geldings that weighed between 101 and 152 kg. PROCEDURES: In a crossover study, each pony received a CRI of racemic ketamine (loading dose, 0.6 mg/kg; CRI, 0.02 mg/kg/min) and S-ketamine (loading dose, 0.3 mg/kg; CRI, 0.01 mg/kg/min), with a 1-month interval between treatments. Arterial blood samples were collected before and at 5, 15, 30, 45, and 60 minutes during drug administration and at 5, 10, 30, and 60 minutes after discontinuing the CRI. Plasma ketamine and norketamine enantiomers were quantified by use of capillary electrophoresis. Individual R-ketamine and S-ketamine concentration-versus-time curves were analyzed by use of a monocompartmental model. Plasma disposition curves for R-norketamine and S-norketamine were described by estimating the area under the concentration-versus-time curve (AUC), maximum concentration (Cmax), and time until Cmax. RESULTS: Plasma concentrations of S-ketamine decreased and biodegradation products increased more rapidly after S-ketamine CRI, compared with results after racemic ketamine CRI. The R-norketamine was eliminated faster than was the S-norketamine. Significant differences between treatments were found for the AUC of S-ketamine and within the racemic ketamine CRI for the AUC and Cmax of norketamine isomers. CONCLUSIONS AND CLINICAL RELEVANCE: CRI of S-ketamine may be preferable over CRI of racemic ketamine in standing equids because the S-enantiomer was eliminated faster when infused alone instead of as part of a racemic mixture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulphonated anthraquinones are precursors of many synthetic dyes and pigments, recalcitrant to biodegradation and thus not eliminated by classical wastewater treatments. In the development of a phytotreatment to remove sulphonated aromatic compounds from dye and textile industrial effluents, it has been shown that rhubarb (Rheum rabarbarum) and common sorrel (Rumex acetosa) are the most efficient plants. Both species, producing natural anthraquinones, not only accumulate, but also transform these xenobiotic chemicals. Even if the precise biochemical mechanisms involved in the detoxification of sulphonated anthraquinones are not yet understood, they probably have cross talks with secondary metabolism, redox processes and plant energy metabolism. The aim of the present study was to investigate the possible roles of cytochrome P450 monooxygenases and peroxidases in the detoxification of several sulphonated anthraquinones. Both plant species were cultivated in a greenhouse under hydroponic conditions, with or without sulphonated anthraquinones. Plants were harvested at different times and either microsomal or cytosolic fractions were prepared. The monooxygenase activity of cytochromes P450 toward several sulphonated anthraquinones was tested using a new method based on the fluorimetric detection of oxygen consumed during cytochromes P450-catalysed reactions. The activity of cytosolic peroxidases was measured by spectrophotometry, using guaiacol as a substrate. A significant activity of cytochromes P450 was detected in rhubarb leaves, while no (rhizome) or low (petioles and roots) activity was found in other parts of the plants. An induction of this enzyme was observed at the beginning of the exposition to sulphonated anthraquinones. The results also indicated that cytochromes P450 were able to accept as substrate the five sulphonated anthraquinones, with a higher activity toward AQ-2,6-SS (0.706 nkat/mg protein) and AQ-2-S (0.720 nkat/mg protein). An activity of the cytochromes P450 was also found in the leaves of common sorrel (1.212 nkat/mg protein (AQ-2,6-SS)), but no induction of the activity occurred after the exposition to the pollutant. The activity of peroxidases increased when rhubarb was cultivated in the presence of the five sulphonated anthraquinones (0.857 nkat/mg protein). Peroxidase activity was also detected in the leaves of the common sorrel (0.055 nkat/mg protein), but in this plant, no significant difference was found between plants cultivated with and without sulphonated anthraquinones. Results indicated that the activity of cytochromes P450 and peroxidases increased in rhubarb in the presence of sulphonated anthraquinones and were involved in their detoxification mechanisms. These results suggest the existence in rhubarb and common sorrel of specific mechanisms involved in the metabolism of sulphonated anthraquinones. Further investigation should be performed to find the next steps of this detoxification pathway. Besides these promising results for the phytotreatment of sulphonated anthraquinones, it will be of high interest to develop and test, at small scale, an experimental wastewater treatment system to determine its efficiency. On the other hand, these results reinforce the idea that natural biodiversity should be better studied to use the most appropriate species for the phytotreatment of a specific pollutant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulphonated anthraquinones are precursors of many synthetic dyes and pigments, recalcitrant to biodegradation, and thus contaminating many industrial effluents and rivers. In the development of a phytotreatment to remove sulphonated aromatic compounds, rhubarb (Rheum rhaponticum), a plant producing natural anthraquinones, as well as maize (Zea mays) and celery (Apium graveolens), plants not producing anthraquinones, were tested for their ability to metabolise these xenobiotics. Plants were cultivated under hydroponic conditions, with or without sulphonated anthraquinones, and were harvested at different times. Either microsomal or cytosolic fractions were prepared. The monooxygenase activity of cytochromes P450 towards several sulphonated anthraquinones was tested using a new method based on the fluorimetric detection of oxygen consumed during cytochromes P450-catalysed reactions. The activity of cytosolic peroxidases was measured by spectrophotometry, using guaiacol as a substrate. Results indicated that the activity of cytochromes P450 and peroxidases significantly increased in rhubarb plants cultivated in the presence of sulphonated anthraquinones. A higher activity of cytochromes P450 was also detected in maize and celery exposed to the pollutants. In these two plants, a peroxidase activity was also detected, but without a clear difference between the control plants and the plants exposed to the organic contaminants. This research demonstrated the existence in rhubarb, maize and celery of biochemical mechanisms involved in the metabolism and detoxification of sulphonated anthraquinones. Taken together, results confirmed that rhubarb might be the most appropriate plant for the phytotreatment of these organic pollutants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding how organisms control soil water dynamics is a major research goal in dryland ecology. Although previous studies have mostly focused on the role of vascular plants on the hydrological cycle of drylands, recent studies highlight the importance of biological soil crusts formed by lichens, mosses, and cyanobacteria (biocrusts) as a major player in this cycle. We used data from a 6.5-year study to evaluate how multiple abiotic (rainfall characteristics, temperature, and initial soil moisture) and biotic (vascular plants and biocrusts) factors interact to determine wetting and drying processes in a semi-arid grassland from Central Spain. We found that the shrub Retama sphaerocarpa and biocrusts with medium cover (25–75%) enhanced water gain and slowed drying compared with bare ground areas (BSCl). Well-developed biocrusts (>75% cover) gained more water, but lost it faster than BSCl microsites. The grass Stipa tenacissima reduced water gain due to rainfall interception, but increased soil moisture retention compared to BSCl microsites. Biotic modulation of water dynamics was the result of different mechanisms acting in tandem and often in opposite directions. For instance, biocrusts promoted an exponential behavior during the first stage of the drying curve, but reduced the importance of soil characteristics that accentuate drying rates. Biocrust-dominated microsites gained a similar amount of water than vascular plants, although they lost it faster than vascular plants during dry periods. Our results emphasize the importance of biocrusts for water dynamics in drylands, and illustrate the potential mechanisms behind their effects. They will help to further advance theoretical and modeling efforts on the hydrology of drylands and their response to ongoing climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Differences in how organisms modify their environment can evolve rapidly and might influence adaptive population divergence [1, 2]. In a common garden experiment in aquatic mesocosms, we found that adult stickleback from a recently diverged pair of lake and stream populations had contrasting effects on ecosystem metrics. These modifications were caused by both genetic and plastic differences between populations and were sometimes comparable in magnitude to those caused by the presence/ absence of stickleback. Lake and streamfish differentially affected the biomass of zooplankton and phytoplankton, the concentration of phosphorus, and the abundance of several prey (e.g., copepods) and non-prey (e.g., cyanobacteria) species. The adult mediated effects on mesocosm ecosystems influenced the survival and growth of a subsequent generation of juvenile stickleback reared in the same mesocosms. The prior presence of adults decreased the overall growth rate of juveniles, and the prior presence of stream adults lowered overall juvenile survival. Among the survivors, lake juveniles grew faster than co-occurring stream juveniles, except in mesocosm ecosystems previously modified by adult lake fish that were reared on plankton. Overall, our results provide evidence for reciprocal interactions between ecosystem dynamics and evolutionary change (i.e., eco-evolutionary feedbacks) in the early stages of adaptive population divergence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This volume represents the proceedings of the Sixteenth Annual Biochemical Engineering Symposium held at Kansas State University on April 26, 1986. Some of the papers describe the progress of ongoing projects, and others contain the results of completed projects. Only brief summaries are given of many of the papers that will be published in full elsewhere. ContentsEnd-Product Inhibition of the Acetone-Butanol Fermentation—Bob Kuhn, Colorado State University Effect of Multiple Substrates in Ethanal Fermentations from Cheese Whey—C.J. Wang, University of Missouri Extraction and Fermentation of Ensiled Sweet Sorghum—Karl Noah, Colorado State University Removal of Nucleic Acids from Bakers' Yeast—Richard M. Cordes, Iowa State University Modeling the Effects of Plasmid Replication and Product Repression on the Growth Rate of Recombinant Bacteria—William E. Bentley, University of Colorado Indirect Estimates of Cell Concentrations in Mass Cultivation of Bacterial Cells—Andrew Fisher, University of Missouri A Mathematical Model for Liquid Recirculation in Airlift Columns—C.H.Lee, Kansas State University Characterization of Imperfect Mixing of Batch Reactors by Two Compartment Model—Peter Sohn, University of Missouri First Order Breakage Model for the Degradation of Pullalan in the Batch Fermentor—Stephen A. Milligan, Kansas State University Synthesis and Nuclear Magnetic Resonance of 13C-Labeled Amylopectin and Maltooligosaccharides—Bernard Y. Tao, Iowa State University Preparation of Fungal Starter Culture in Gas Fluidized Bed Reactor—Pal Mihaltz, Colorado State University Yeast Flocculation and Sedimentation—David Szlag, University of Colorado Protein Enrichment of Extrusion Cooked Corn by Solid Substrate Fermentation—Lucas Alvarez-Martinez, Colorado State University Optimum Design of a Hollow Fiber Mammalian Cell Reactor—Thomas Chresand, Colorado State University Gas Chromatography and Nuclear Magnetic Resonance of Trifluoroacetylated Carbohydrates—Steven T. Summerfelt, Iowa State University Kinetic and Bioenergetic Considerations for Modeling Photosynthetic Microbial P~ocesses in Producing Biomass and Treating Wastewater—H. Y. Lee, Kansas State University Mathematical Modeling and Simulation of Bicarbonate-Limited Photsynthetic Growth in Continuous Culture—Craig Curless, Kansas State University Data Acquisition and Control of a Rotary Drum Solid State Fermentor—Mnasria A. Habib, Colorado State University Biodegradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D)—Greg Sinton, Kansas State University