930 resultados para Crop residues retained in soil
Resumo:
In this study we analyze how the ion concentrations in forest soil solution are determined by hydrological and biogeochemical processes. A dynamic model ACIDIC was developed, including processes common to dynamic soil acidification models. The model treats up to eight interacting layers and simulates soil hydrology, transpiration, root water and nutrient uptake, cation exchange, dissolution and reactions of Al hydroxides in solution, and the formation of carbonic acid and its dissociation products. It includes also a possibility to a simultaneous use of preferential and matrix flow paths, enabling the throughfall water to enter the deeper soil layers in macropores without first reacting with the upper layers. Three different combinations of routing the throughfall water via macro- and micropores through the soil profile is presented. The large vertical gradient in the observed total charge was simulated succesfully. According to the simulations, gradient is mostly caused by differences in the intensity of water uptake, sulfate adsorption and organic anion retention at the various depths. The temporal variations in Ca and Mg concentrations were simulated fairly well in all soil layers. For H+, Al and K there were much more variation in the observed than in the simulated concentrations. Flow in macropores is a possible explanation for the apparent disequilibrium of the cation exchange for H+ and K, as the solution H+ and K concentrations have great vertical gradients in soil. The amount of exchangeable H+ increased in the O and E horizons and decreased in the Bs1 and Bs2 horizons, the net change in whole soil profile being a decrease. A large part of the decrease of the exchangeable H+ in the illuvial B horizon was caused by sulfate adsorption. The model produces soil water amounts and solution ion concentrations which are comparable to the measured values, and it can be used in both hydrological and chemical studies of soils.
Resumo:
Diesel spills contaminate aquatic and terrestrial environments. To prevent the environmental and health risks, the remediation needs to be advanced. Bioremediation, i.e., degradation by microbes, is one of the suitable methods for cleaning diesel contamination. In monitored natural attenuation technique are natural processes in situ combined, including bioremediation, volatilization, sorption, dilution and dispersion. Soil bacteria are capable of adapting to degrade environmental pollutants, but in addition, some soil types may have indigenous bacteria that are naturally suitable for degradation. The objectives for this work were (1) to find a feasible and economical technique to remediate oil spilled into Baltic Sea water and (2) to bioremediate soil contaminated by diesel oil. Moreover, the aim was (3) to study the potential for natural attenuation and the indigenous bacteria in soil, and possible adaptation to degrade diesel hydrocarbons. In the aquatic environment, the study concentrated on diesel oil sorption to cotton grass fiber, a natural by-product of peat harvesting. The impact of diesel pollution was followed in bacteria, phytoplankton and mussels. In a terrestrial environment, the focus was to compare the methods of enhanced biodegradation (biostimulation and bioaugmentation), and to study natural attenuation of oil hydrocarbons in different soil types and the effect that a history of previous contamination may have on the bioremediation potential. (1) In the aquatic environment, rapid removal of diesel oil was significant for survival of tested species and thereby diversity maintained. Cotton grass not only absorbed the diesel but also benefited the bacterial growth by providing a large colonizable surface area and hence oil-microbe contact area. Therefore use of this method would enhance bioremediation of diesel spills. (2) Biostimulation enhances bioremediation, and (3) indigenous diesel-degrading bacteria are present in boreal environments, so microbial inocula are not always needed. In the terrestrial environment experiments, the combination of aeration and addition of slowly released nitrogen advanced the oil hydrocarbon degradation. Previous contamination of soil gives the bacterial community the potential for rapid adaptation and efficient degradation of the same type of contaminant. When the freshly contaminated site needs addition of diesel degraders, previously contaminated and remediated soil could be used as a bacterial inoculum. Another choice of inoculum could be conifer forest soil, which provides a plentiful population of degraders, and based on the present results, could be considered as a safe non-polluted inoculum. According to the findings in this thesis, bioremediation (microbial degradation) and monitored natural attenuation (microbial, physical and chemical degradation) are both suitable techniques for remediation of diesel-contaminated sites in Finland.
Resumo:
We apply the method of multiple scales (MMS) to a well-known model of regenerative cutting vibrations in the large delay regime. By ``large'' we mean the delay is much larger than the timescale of typical cutting tool oscillations. The MMS up to second order, recently developed for such systems, is applied here to study tool dynamics in the large delay regime. The second order analysis is found to be much more accurate than the first order analysis. Numerical integration of the MMS slow flow is much faster than for the original equation, yet shows excellent accuracy in that plotted solutions of moderate amplitudes are visually near-indistinguishable. The advantages of the present analysis are that infinite dimensional dynamics is retained in the slow flow, while the more usual center manifold reduction gives a planar phase space; lower-dimensional dynamical features, such as Hopf bifurcations and families of periodic solutions, are also captured by the MMS; the strong sensitivity of the slow modulation dynamics to small changes in parameter values, peculiar to such systems with large delays, is seen clearly; and though certain parameters are treated as small (or, reciprocally, large), the analysis is not restricted to infinitesimal distances from the Hopf bifurcation.
Resumo:
Salmonella typhimurium YeaD (stYeaD), annotated as a putative aldose 1-epimerase, has a very low sequence identity to other well characterized mutarotases. Sequence analysis suggested that the catalytic residues and a few of the substrate-binding residues of galactose mutarotases (GalMs) are conserved in stYeaD. Determination of the crystal structure of stYeaD in an orthorhombic form at 1.9 angstrom resolution and in a monoclinic form at 2.5 angstrom resolution revealed this protein to adopt the beta-sandwich fold similar to GalMs. Structural comparison of stYeaD with GalMs has permitted the identification of residues involved in catalysis and substrate binding. In spite of the similar fold and conservation of catalytic residues, minor but significant differences were observed in the substrate- binding pocket. These analyses pointed out the possible role of Arg74 and Arg99, found only in YeaD-like proteins, in ligand anchoring and suggested that the specificity of stYeaD may be distinct from those of GalMs
Resumo:
The study of soil microbiota and their activities is central to the understanding of many ecosystem processes such as decomposition and nutrient cycling. The collection of microbiological data from soils generally involves several sequential steps of sampling, pretreatment and laboratory measurements. The reliability of results is dependent on reliable methods in every step. The aim of this thesis was to critically evaluate some central methods and procedures used in soil microbiological studies in order to increase our understanding of the factors that affect the measurement results and to provide guidance and new approaches for the design of experiments. The thesis focuses on four major themes: 1) soil microbiological heterogeneity and sampling, 2) storage of soil samples, 3) DNA extraction from soil, and 4) quantification of specific microbial groups by the most-probable-number (MPN) procedure. Soil heterogeneity and sampling are discussed as a single theme because knowledge on spatial (horizontal and vertical) and temporal variation is crucial when designing sampling procedures. Comparison of adjacent forest, meadow and cropped field plots showed that land use has a strong impact on the degree of horizontal variation of soil enzyme activities and bacterial community structure. However, regardless of the land use, the variation of microbiological characteristics appeared not to have predictable spatial structure at 0.5-10 m. Temporal and soil depth-related patterns were studied in relation to plant growth in cropped soil. The results showed that most enzyme activities and microbial biomass have a clear decreasing trend in the top 40 cm soil profile and a temporal pattern during the growing season. A new procedure for sampling of soil microbiological characteristics based on stratified sampling and pre-characterisation of samples was developed. A practical example demonstrated the potential of the new procedure to reduce the analysis efforts involved in laborious microbiological measurements without loss of precision. The investigation of storage of soil samples revealed that freezing (-20 °C) of small sample aliquots retains the activity of hydrolytic enzymes and the structure of the bacterial community in different soil matrices relatively well whereas air-drying cannot be recommended as a storage method for soil microbiological properties due to large reductions in activity. Freezing below -70 °C was the preferred method of storage for samples with high organic matter content. Comparison of different direct DNA extraction methods showed that the cell lysis treatment has a strong impact on the molecular size of DNA obtained and on the bacterial community structure detected. An improved MPN method for the enumeration of soil naphthalene degraders was introduced as an alternative to more complex MPN protocols or the DNA-based quantification approach. The main advantage of the new method is the simple protocol and the possibility to analyse a large number of samples and replicates simultaneously.
Resumo:
Chilli-based repellents have shown promise as deterrents against crop-raiding elephants in Africa. We experimented with ropes coated with chilli-based repellent as a cheap alternative to existing elephant cropraid deterrent methods in India. Three locations (Buxa Tiger Reserve, Wyanad Wildlife Sanctuary and Hosur Forest Division) representing varying rainfall regimes from high to low, and with histories of intense elephant-agriculture conflict, were selected for the experiments that were conducted over 2-3 months during the pre-harvest period of the kharif season in late 2006. Chilli and tobacco powder mixed with waste oil was applied to ropes strung around agricultural fields of 1.4-5.5 km perimeter and elephant approaches were monitored. Elephants breached the rope fences a few times at all three study sites. Female-led herds were far more deterred (practically 100% reduction) than were solitary males (c. 50%) by the chilli-tobacco rope. Efficacy of this method as a deterrent was significantly better in the low-rainfall regime relative to medium and high-rainfall regimes. The initial promising results present a case for more rigorous experimentation; these would help determine if the elephants avoiding the rope are responding physiologically to the chilli-tobacco smell or merely reacting cautiously to a novel substance in their environment.
Resumo:
The physical properties of surface soil horizons, essentially pore size, shape, continuity and affinity for water, regulate water entry into the soil. These properties are prone to changes caused by natural forces and human activity. The hydraulic properties of the surface soil greatly impact the generation of surface runoff and accompanied erosion, the major concern of agricultural water protection. The general target of this thesis was to improve our understanding of the structural and hydraulic properties of boreal clay soils. Physical properties of a clayey surface soil (0 - 10 cm, clay content 51%), with a micaceous/illitic mineralogy subjected to three different management practices of perennial vegetation, were studied. The study sites were vegetated buffer zones located side by side in SW Finland: 1) natural vegetation with no management, 2) harvested once a year, and 3) grazed by cattle. The soil structure, hydraulic properties, shrinkage properties and soil water repellency were determined at all sites. Two distinct flow domains were evident. The surface soil was characterized by subangular blocky, angular blocky and platy aggregates. Hence, large, partially accommodated, irregular elongated pores dominated the macropore domain at all sites. The intra-aggregate pore system was mostly comprised of pores smaller than 30 μm, which are responsible for water storage. Macropores at the grazed site, compacted by hoof pressure, were horizontally oriented and pore connectivity was poorest, which decreased water and air flux compared with other sites. Drying of the soil greatly altered its structure. The decrease in soil volume between wet and dry soil was 7 - 10%, most of which occurred in the moisture range of field conditions. Structural changes, including irreversible collapse of interaggregate pores, began at matric potentials around -6 kPa indicating, instability of soil structure against increasing hydraulic stress. Water saturation and several freezethaw cycles between autumn and spring likely weakened the soil structure. Soil water repellency was observed at all sites at the time of sampling and when soil was dryer than about 40 vol.%. (matric potential < -6 kPa). Therefore, water repellency contributes to water flow over a wide moisture range. Water repellency was also observed in soils with low organic carbon content (< 2%), which suggests that this phenomenon is common in agricultural soils of Finland due to their relatively high organic carbon content. Aggregate-related pedofeatures of dense infillings described as clay intrusions were found at all sites. The formation of these intrusions was attributed to clay dispersion and/or translocation during spring thaw and drying of the suspension in situ. These processes generate very new aggregates whose physical properties are most probably different from those of the bulk soil aggregates. Formation of the clay infillings suggested that prolonged wetness in autumn and spring impairs soil structure due to clay dispersion, while on the other hand it contributes to the pedogenesis of the soil. The results emphasize the dynamic nature of the physical properties of clay soils, essentially driven by their moisture state. In a dry soil, fast preferential flow is favoured by abundant macropores including shrinkage cracks and is further enhanced by water repellency. Increase in soil moisture reduces water repellency, and swelling of accommodated pores lowers the saturated hydraulic conductivity. Moisture- and temperature-related processes significantly alter soil structure over a time span of 1 yr. Thus, the pore characteristics as well as the hydraulic properties of soil are time-dependent.
Resumo:
Suomen maatalousmaihin kertynyttä fosforia hyödynnetään tehottomasti, ja samalla muokkauskerroksen suuri fosforimäärä on alttiina huuhtoutumiselle. Arbuskelimykorritsaa (AM) hyödyntämällä on mahdollista tehostaa viljelykasvin fosforinottoa ja kasvua, ja siten vähentää fosforin huuhtoutumista. Tämän tutkielman tavoitteena oli selvittää mykorritsan vaikutus kasvin kasvuun ja fosforinottoon karjanlantalannoituksella mineraalilannoitukseen verrattuna sekä näiden lannoitusten pitkäaikaisvaikutusta AM-sieniyhteisöihin. Jotta lannoituskäytäntöjen vaikutus mykorritsaan voitiin suhteuttaa muihin maan laatutekijöihin, näiden käytäntöjen vaikutus myös satomääriin sekä muihin maan laatumittareihin arvioitiin. Pitkäaikainen kenttäkoe perustettiin kolmelle paikkakunnalle Pohjois-Ruotsissa vuosina 1965–66. Kuusivuotinen viljelykierto koostui joko viisivuotisesta nurmesta ja ohrasta tai ohramonokulttuurista. Lannoituskäsittelyt 32-vuoden ajan olivat suositusten mukainen (NPK) ja edelliseen nähden kaksinkertainen (2NPK) mineraalilannoitus sekä karjanlantalannoitus (KL), jonka ravinnemäärä vastasi NPK -käsittelyä. Kolmen lannoituskäsittelyn vaikutusta mykorritsan tehokkuuteen kasvin kasvun ja fosforiravitsemuksen näkökulmasta tutkittiin astiakokeissa. Mykorritsasieniyhteisöjen toiminnallisten erojen selvittämiseksi tehtiin takaisin- ja ristiinsiirrostuskoe. (5 v-%) steriloitua maanäytettä NPK- ja KL -käsittelyistä siirrostettiin käsittelemättömiin maanäytteisiin, jotka olivat samoista lannoituskäsittelyistä. Mykorritsan positiivinen vaikutus kasvin kasvuun ja fosforiravitsemukseen oli suurin kun käytettiin karjanlantaa. NPK ja 2NPK -käsittelyiden välillä ei havaittu eroja. Takaisin- ja ristiinsiirrostuskokeessa ei ollut tilastollisesti merkitseviä eroja. Nurmi- ja ohrasadot olivat suurimmat kun mineraalilannoitetta annettiin suosituksiin nähden kaksinkertainen määrä. Satomäärät olivat yhtä suuret tai suuremmat kun käytettiin karjanlantaa NPK –lannoituksen sijaan. Karjanlantakäsittely lisäsi maaperän kokonaishiili- ja kokonaistyppipitoisuutta verrattuna NPK -käsittelyyn, joka sisälsi saman määrän ravinteita. Samalla huuhtoutumiselle altis liukoisen fosforin pitoisuus säilyi alhaisella tasolla. Karjanlanta edisti mykorritsan toimintaedellytyksiä, ja siksi mykorritsasta saatua hyötyä fosforinotossa ja kasvuvaikutuksena mineraalilannoitteisiin verrattuna, mutta se ei vaikuttanut mykorritsasieniyhteisön toiminnallisiin ominaisuuksiin. Karjanlantalannoitus paransi mitattuja maan ominaisuuksia kokonaisuudessaan, eikä se vähentänyt satoja.
Resumo:
Sesbania mosaic virus (SMV) is a plant virus infecting Sesbania grandiflora plants in Andhra Pradesh, India. Amino acid sequence of the tryptic peptides of SMV coat protein were determined using a gas phase sequenator. These sequences showed identical amino acids at 69% of the positions when aligned with the corresponding residues of southern bean mosaic virus (SBMV).Crystals diffracting to better than 3 Å resolution were obtained by precipitating the virus with ammonium sulphate. The crystals belonged to rhombohedral space group R3 with α = 291·4 Å and α = 61·9°. Three-dimensional X-ray diffraction data on these crystals were collected to a resolution of 4·7 Å, using a Siemens-Nicolet area detector system. Self-rotation function studies revealed the icosahedral symmetry of the virus particles, as well as their precise orientation in the unit cell. Cross-rotation function and modelling studies with SBMV showed that it is a valid starting model for SMV structure determination. Low resolution phases computed using a polyalanine model of SBMV were subjected to refinement and extension by real-space electron density averaging and solvent flattening. The final electron density map revealed a polypeptide fold similar to SBMV. The single disulphide bridge of SBMV coat protein is retained in SMV. Four icosahedrally independent cation binding sites have been tentatively identified. Three of these sites, related by a quasi threefold axis, are also found in SBMV. The fourth site is situated on the quasi threefold axis. Aspartic acid residues, which replace Ile218 of SBMV from the quasi threefold-related subunits are suitable ligands to the cation at this site
Resumo:
Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
As a prelude to achieving transgenesis in Bombyx mori, conditions have been established for successful microinjection of cloned foreign genes into the silk worm eggs. A sharpened metallic needle is used to pierce the thick chorion layer of the eggsheil, approaching through a droplet of DNA solution deposited on its surface. The microinjection is carried out within 2-2.5 h after oviposition and the injected eggs show 3-5% hatchability and 80-90% survival. Such larvae continuously expressed the microinjected cloned reporter gene, beta-galactosidase, placed under the control of a constitutively expressed cytoplasmic actin A3 gene promoter from B. mori. The expression is seen in different tissues, viz. the fat body, tracheae and the silk glands, till the late larval instars. The microinjected DNA sequences are retained in the adult G(o) moths.
Resumo:
The life-history of Neurospora in nature has remained largely unknown. The present study attempts to remedy this. The following conclusions are based on observation of Neurospora on fire-scorched sugar cane in agricultural fields, and reconstruction experiments using a colour mutant to inoculate sugar cane burned in the laboratory. The fungus persists in soil as heat-resistant dormant ascospores. These are activated by a chemical(s) released into soil from the burnt substrate. The chief diffusible activator of ascospores is furfural and the germinating ascospores infect the scorched substrate. An invasive mycelium grows progressively upwards inside the juicy sugar cane and produces copious macroconidia externally through fire-induced openings formed in the plant tissue, or by the mechanical rupturing of the plant epidermal tissue by the mass of mycelium. The loose conidia are dispersed by wind and/or foraged by microfauna. It is suggested that the constant production of macroconidia, and their ready dispersal, serve a physiological role: to drain the substrate of minerals and soluble sugars, thereby creating nutritional conditions which stimulate sexual reproduction by the fungus. Sexual reproduction in the sugar-depleted cellulosic substrate occurs after macroconidiation has ceased totally and is favoured by the humid conditions prevailing during the monsoon rains. Profuse microconidiophores and protoperithecia are produced simultaneously in the pockets below the loosened epidermal tissue. Presumably protoperithecia are fertilized by microconidia which are possibly transmitted by nematodes active in the dead plant tissue. Mature perithecia release ascospores in situ which are passively liberated in the soil by the disintegration of the plant material and are, apparently, distributed by rain or irrigation water.
Resumo:
Large scale reclamation works in coastal areas of the Nakdong River plain are at various stages of progress, since early 1990's on in-situ soft marine clay deposits. These deposits are of the order of 30 to 40 m thick. A realistic rapid characterization of soft ground would ensure success of any reclamation work in this area. In order to cope with the work carried out with different agencies, it is desirable to evolve a systematic methodology. In this study, engineering properties of clays at three coastal areas, Gadukdo, Noksan and Shinho, have been generated. The analysis of data has been done within the framework of classical developments in soil mechanics. Analysis has also been made by making use of the recent developments in dealing with soft clays. The dominant factors, namely, stress, time, and environment influencing the response of clay to loading are identified.
Resumo:
Longevity remains as one of the central issues in the successful commercialization of polymer electrolyte membrane fuel cells (PEMFCs) and primarily hinges on the durability of the cathode. Incorporation of gold (Au) to platinum (Pt) is known to ameliorate both the electrocatalytic activity and stability of cathode in relation to pristine Pt-cathodes that are currently being used in PEMFCs. In this study, an accelerated stress test (AST) is conducted to simulate prolonged fuel-cell operating conditions by potential cycling the carbon-supported Pt-Au (Pt-Au/C) cathode. The loss in performance of PEMFC with Pt-Au/C cathode is found to be similar to 10% after 7000 accelerated potential-cycles as against similar to 60% for Pt/C cathode under similar conditions. These data are in conformity with the electrochemical surface-area values. PEMFC with Pt-Au/C cathode can withstand > 10 000 potential cycles with very little effect on its performance. X-ray diffraction and transmission electron microscopy studies on the catalyst before and after AST suggest that incorporating Au with Pt helps mitigate aggregation of Pt particles during prolonged fuel-cell operations while X-ray photoelectron spectroscopy reflects that the metallic nature of Pt is retained in the Pt-Au catalyst during AST in comparison to Pt/C that shows a major portion of Pt to be present as oxidic platinum. Field-emission scanning electron microscopy conducted on the membrane electrode assembly before and after AST suggests that incorporating Au with Pt helps mitigating deformations in the catalyst layer.
Resumo:
The slow flow of granular materials is often marked by the existence of narrow shear layers, adjacent to large regions that suffer little or no deformation. This behaviour, in the regime where shear stress is generated primarily by the frictional interactions between grains, has so far eluded theoretical description. In this paper, we present a rigid-plastic frictional Cosserat model that captures thin shear layers by incorporating a microscopic length scale. We treat the granular medium as a Cosserat continuum, which allows the existence of localised couple stresses and, therefore, the possibility of an asymmetric stress tensor. In addition, the local rotation is an independent field variable and is not necessarily equal to the vorticity. The angular momentum balance, which is implicitly satisfied for a classical continuum, must now be solved in conjunction with the linear momentum balances. We extend the critical state model, used in soil plasticity, for a Cosserat continuum and obtain predictions for flow in plane and cylindrical Couette devices. The velocity profile predicted by our model is in qualitative agreement with available experimental data. In addition, our model can predict scaling laws for the shear layer thickness as a function of the Couette gap, which must be verified in future experiments. Most significantly, our model can determine the velocity field in viscometric flows, which classical plasticity-based model cannot.