952 resultados para Coupled thermogravimetry-infrared


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to analyze the oxidative stability of biodiesel from jatropha obtained from different purification processes, three wet processes with different drying (in a vacuum oven, conventional oven and in anhydrous sodium sulfate) and dry (purification with magnesium silicate adsorbent). Raw materials of different qualities (jatropha crop ancient and recent crop) were used. The Jatropha oil was extracted by mechanical extraction and refined. The Jatropha biodiesel was obtained by the transesterification reaction in ethyl route using alkaline catalysis. The biodiesel samples were characterized by analysis of water content, carbon residue, Absorption Spectroscopy in the Infrared Region and Thermogravimetry. Thermogravimetric curves of purified PUsv* PUsq* and had higher initial decomposition temperatures, indicating that the most stable, followed by samples PU* and PUSC*. Besides the sample SP* is a smaller initial temperature, confirming the sample without purification to be less thermally stable. The percentage mass loss of the purified samples showed conversion of about 98.5%. The results of analyzes carbon residue and infrared suggested that contamination by impurities is the main factor for decreased oxidative stability of biodiesel. The oxidative stability was assessed from periodic monitoring, using the techniques of Rancimat, peroxide index, acid value and Pressurized Differential Scanning Calorimetry. Samples of biodiesel from jatropha which showed better oxidative stability were of the best quality raw material and wet scrubbing: PUsq* with dry chemical, using anhydrous sodium sulfate and PUsv* with vacuum drying, which had oxidative stability 6 hours in Rancimat time 0 days, within the limits established by the Technical Regulation No. 4/2012 of the ANP, without the addition of antioxidant, suggesting that these procedures the least influence on the oxidative stability of biodiesel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To overcome the challenge of meeting growing energy demand in a sustainable way, biodiesel has shown very promising as alternative energy can replace fossil fuels, even partially. Industrially, the biodiesel is produced by homogeneous transesterification reaction of vegetable oils in the presence of basic species used as catalysts. However, this process is the need for purification of the esters obtained and the removal of glycerin formed after the reaction. This context, the alternative catalysts have that can improve the process of biodiesel production, aiming to reduce costs and facilitate its production. In this study, the AlSBA-15 support with Si / Al ratio = 50 was synthesized, as like as the heterogeneous catalysts of zinc oxide and magnesium supported on mesoporous AlSBA-15 silica, in the concentrations of 5, 10, 15 and 30 %, relative to the support. The textural properties and structural characterization of catalysts and supports were determined by techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) coupled to the chemical analyzer, adsorption / desorption of N2, thermal analysis (TG / DTG), absorption spectroscopy in the infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Characterization results indicated that the support AlSBA-15 retained the hexagonal ordered after the incorporation of zinc oxide and magnesium oxide in the holder. For heterogeneous catalysts, ZnO-AlSBA-15, that was observed the presence of zinc oxide nanoparticles dispersed in the surface and interior channels of the mesoporous and microporous support. The catalytic activity was evaluated by the transesterification reaction of sunflower oil via methylic route, and some reaction parameters were optimized with the most active catalyst in biodiesel production by sunflower oil. For the series of heterogeneous catalysts, the sample with 30 % ZnO supported on AlSBA-15 showed a better conversion of triglyceride to methyl esters, about 95.41 % of reaction conditions: temperature 175 °C, with molar ratio of 42:1, stirring at 200 rpm and under a pressure of 14 bar for 6 h. The catalyst MgO-AlSBA-15 showed no catalytic activity in the studied reactions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study used the Thermogravimetry (TG) and molecular absorption spectroscopy in UV-visible region to determine the iron content in herbal medicinal ferrous sulfate used in the treatment of iron deficiency anemia. The samples were characterized by IR, UV, TG / DTG, DTA, DSC and XRD. The thermoanalytical techniques evaluated the thermal stability and physicochemical events and showed that the excipients interfere in the decomposition of the active ingredients. The results of thermogravimetry showed that the decomposition temperature of the active principle Fe2(SO4)3 (T = 602 °C) is higher as compared to samples of tablets (566 586 °C). In the DTA and DSC curves were observed exothermic and endo events for samples of medicines and active analysis. The infrared spectra identified key functional groups exist in all samples of active ingredients, excipients and compressed studied, such as symmetric and asymmetric stretching of OH, CH, S=O. The analysis by X-ray diffraction showed that all samples had crystallinity and the final residue showed peaks indicating the presence of silicon dioxide, titanium dioxide and talc that are excipients contained in pharmaceutical formulations in addition to iron oxide. The results obtained by TG to determine the iron content of the studied drugs showed a variance when compared with those obtained by theoretical and UV-visible, probably due to formation of a mixture of Fe2O3 and Fe2(SO4)3. In one tablet was obtained FE content of 15.7 % and 20.6 % for TG by UV-visible, the sample EF 2 was obtained as a percentage of 15.4 % and 21.0 % for TG by UV-visible . In the third SF samples were obtained a content of 16.1 % and 25.5 % in TG by UV-visible, and SF 4 in the percentage of TG was 16.7 % and 14.3 % UV-visible

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mesoporous nanostructured materials have been studied for application in the oil industry, in particular Al-MCM-41, due to the surface area around 800 to 1.000 m2 g-1 and, pore diameters ranging from 2 to 10 nm, suitable for catalysis to large molecules such as heavy oil. The MCM-41 has been synthesized by hydrothermal method, on which aluminum was added, in the ratio Si/Al equal to 50, to increase the generation of active acid sites in the nanotubes. The catalyst was characterized by X-ray diffraction (XRD), surface area by the BET method and, the average pore volume BJH method using the N2 adsorption, absorption spectroscopy in the infrared Fourier Transform (FT-IR) and determination of surface acidity with application of a probe molecule - n-butylamine. The catalyst showed well-defined structural properties and consistent with the literature. The overall objective was to test the Al-MCM-41 as catalyst and thermogravimetric perform tests, using two samples of heavy oil with API º equal to 14.0 and 18.5. Assays were performed using a temperature range of 30-900 ° C and heating ratios (β) ranging from 5, 10 and 20 °C min-1.The aim was to verify the thermogravimetric profiles of these oils when subjected to the action of the catalyst Al- MCM-41. Therefore, the percentage ranged catalyst applied 1, 3, 5, 10 and 20 wt%, and from the TG data were applied two different kinetic models: Ozawa-Flynn-Wall (OFW) and Kissinger-Akahrira-Sunose (KAS).The apparent activation energies found for both models had similar values and were lower for the second event of mass loss known as cracking zone, indicating a more effective performance of Al-MCM-41 in that area. Furthermore, there was a more pronounced reduction in the value of activation energy for between 10 and 20% by weight of the oil-catalyst mixture. It was concluded that the Al-MCM-41 catalyst has applicability in heavy oils to reduce the apparent activation energy of a catalyst-oil system, and the best result with 20% by weight of Al-MCM-41

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The processing of heavy oil produced in Brazil is an emergency action and a strategic plan to obtain self-sufficiency and economic surpluses. Seen in these terms, it is indispensable to invest in research to obtain new catalysts for obtaining light fraction of hydrocarbons from heavy fractions of petroleum. This dissertation for the degree of Doctor of Philosophy reports the materials preparation that combine the high catalytic activity of zeolites with the greater accessibility of the mesoporosity, more particularly the HZSM-5/MCM-41 hybrid, done by synthesis processes with less environmental impact than conventional ones. Innovative methodologies were developed for the synthesis of micro-mesoporous hybrid material by dual templating mechanism and from crystalline zeolitic aluminosilicate in the absence of organic template. The synthesis of hybrid with pore bimodal distribution took place from one-single organic directing agent aimed to eliminate the use of organic templates, acids of any kind or organic solvents like templating agent of crystalline zeolitic aluminosilicate together with temperature-programmed microwave-assisted, making the experimental procedures of preparation most practical and easy, with good reproducibility and low cost. The study about crystalline zeolitic aluminosilicate in the absence of organic template, especially MFI type, is based on use of H2O and Na+ cation playing a structural directing role in place of an organic template. Advanced characterization techniques such as X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Highresolution Transmission Electron Microscopy (HRTEM), Adsorption of N2 and CO2, kinetic studies by Thermogravimetric Analysis (TGA) and Pyrolysis coupled to Gas Chromatography/Mass Spectrometry (Pyrolysis-GC/MS) were employed in order to evaluate the synthesized materials. Achieve the proposed objectives, has made available a set of new methodologies for the synthesis of zeolite and hybrid micro-mesoporous material, these suitable for catalytic pyrolysis of heavy oils aimed at producing light fraction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a work involving fundamental studies of chemistry where the synthesis and structural characterization, as well as a possible future application of these new compounds as luminescent sensors or sunscreen agents, complexes with 4,4 diaminostilbene-2,2-disulfonic (DSD) and trivalent lanthanide ions La3+, Nd3+, Eu3+, Gd3+ and Yb3+, were synthesized in the ratio of 3 mmol: 1 mmol (DSD: lanthanides). The complexes obtained with these ions were present in powder form and were characterized by complexometric titration with EDTA CHN Elemental analysis, molecular absorption spectroscopy in the ultraviolet region, the absorption spectroscopy in the infrared, thermal analysis (TG / DTG), Nuclear Magnetic Resonance - NMR 1H and Luminescence Spectroscopy. The complexometric titration and CHN analysis, confirmed the TG / DTG which suggest that these complexes have the following general chemical formulas: [La2(C14H12S2O6N2)2(H2O)2Cl2].7H2O,[Nd2(C14H12S2O6N2)2(H2O)2Cl2].6H2O,[Eu2(C14 H12S2O6N2)2(H2O)2Cl2].7H2O,[Gd2(C14H12S2O6N2)2(H2O)2Cl2].4H2O e [Yb2(C14H12S2O6N2)2(H2O)2].6H2O. The disappearance of the bands in the infrared spectrum at 2921 cm-1 and 2623 cm-1 and the displacement of the bands in the spectra of the amine complex indicate that the lanthanide ion is coordinated to the oxygen atoms and the sulfonate groups of the nitrogens amines, suggesting the formation of the dimer. The disappearance of the signal and the displacement signal SO3H amines in the 1H NMR spectrum of this complex are also indicative coordination and dimer formation. The Thermogravimetry indicates that the DSD is thermally stable in the range of 40º to 385°C and their complexes with lanthanide ions exhibit weight loss between 4 and 5 stages. The Uv-visible spectra indicated that the DSD and complexes exhibit cis isomers. The analysis of luminescence indicates that the complexes do not exhibit emission in the region of the lanthanides but an intense emission part of the binder. This is related to the triplet states of the ligand, which are in the lowest energy state emitting lanthanide ions, and also the formation of the dimer that suppress the luminescence of ion Eu3+. The formation of dimer was also confirmed by calculating the europium complex structure using the model Hamiltonian PM6 and Sparkle

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this in vitro study was to evaluate the influence of pit and fissure sealants on fluorescence readings using lasers. We selected 166 permanent molars and randomly divided them into 4 groups which were each treated with a different sealant (a commercially available clear sealant, 2 opaque sealants and an experimental nanofilled clear sealant). The teeth were independently measured twice by 2 experienced dentists using conventional laser fluorescence (LF) and a laser fluorescence pen device (LFpen), before and after sealing, and again after thermocycling to simulate the thermal stressing between the tooth and the dental materials. Friedman test showed no statistically significant changes using LF and LFpen for the commercial clear sealant group, although values tended to increase after sealing. However, the values increased significantly after thermocycling. There was a statistically significant decrease in fluorescence after application of opaque sealants. After application of the experimental nanofilled clear sealant, LF values increased only after thermocycling, whereas the LFpen values increased after sealing and after thermocycling as well. The intraclass correlation coefficient ranged from 0.87 to 0.96 for interexaminer and 0.82 to 0.94 for intraexaminer reproducibility. It was shown that pit and fissure sealants influence LF and LFpen readings, with the values increasing or decreasing according to the material used. In conclusion, both laser fluorescence devices could be useful as an adjunct to detect occlusal caries under unfilled clear sealants. Nevertheless, surfaces sealed with clear nanofilled material could be assessed using only the LF device. Copyright (C) 2008 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: This study aimed at evaluating the degree of conversion (DC) of four composite resins, being one nanofilled and 3 microhybrid resins, photo-activated with second- and third-generation light-emitting diodes (LEDs). Material and methods: Filtek (TM) Z350 nanofilled composite resins and Amelogen (R) Plus, Vit-l-escence (TM) and Opallis microhybrid resins were photo-activated with two second-generation LEDs (Radii-cal and Elipar Free Light (TM) 2) and one third-generation LED (Ultra-Lume LED 5) by continuous light mode, and a quartz halogen-tungsten bulb (QHT, control). After 24 h of storage, the samples were pulverized into fine powder and 5 mg of each material were mixed with 100 mg of potassium bromide (KBr). After homogenization, they were pressed, which resulted in a pellet that was evaluated using an infrared spectromer (Nexus 470, Thermo Nicolet) equipped with TGS detector using diffuse reflectance (32 scans, resolution of 4 cm(-1)) coupled to a computer. The percentage of unreacted carbon-carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1). Results: The ANOVA showed a significant effect on the interaction between the light-curing units (LCUs) and the composite resins (p<0.001). The Tukey's test showed that the nanofilled resin (Filtek (TM) Z350) and Opallis when photo-activated by the halogen lamp (QTH) had the lowest DC compared with the other microhybrid composite resins. The DC of the nanofilled resin (Filtek (TM) Z350) was also lower using LEDs. The highest degrees of conversion were obtained using the third-generation LED and one of second-generation LEDs (Elipar Free Light (TM) 2). Conclusions: The nanofilled resin showed the lowest DC, and the Vit-l-escence (TM) microhybrid composite resin showed the highest DC. Among the LCUs, it was not possible to establish an order, even though the second-generation LED Radii-cal provided the lowest DC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is a study on the population dynamics of blowflies employing a density-dependent. non-linear mathematical model and a coupled population formalism. In this Study, we investigated the coupled population dynamics applying fuzzy subsets to model the Population trajectory. analyzing demographic parameters such as fecundity, Survival, and migration. The main results suggest different possibilities in terms of dynamic behavior produced by migration in coupled Populations between distinct environments and the rescue effect generated by the connection between populations. It was possible to conclude that environmental heterogeneity can play an important role in blowfly metapopulation systems. The implications of these results for population dynamics of blowflies are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(hydroxybutyrate-co-valerate) (PHBV) and poly(epsilon-caprolactone) (PCL) PCL/PHBV (4:1) blend films were prepared by melt-pressing. The biodegradation of the films in response to burial in soil for 30 days was investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TG). The PHBV film was the most susceptible to microbial attack, since it was rapidly biodegraded via surface erosion in 15 days and completely degraded in 30 days. The PCL film also degraded but more slowly than PHBV. The degradation of the PCL/PHBV blend occurred in the PHBV phase, inducing changes in the PCL phases (interphase) and resulting in an increase of its crystalline fraction.