941 resultados para Clonal propagation
Resumo:
We provide statistical evidence of the effect of the solar wind dynamic pressure (Psw) on the northern winter and spring circulations. We find that the vertical structure of the Northern Annular Mode (NAM), the zonal mean circulation, and Eliassen-Palm (EP)-flux anomalies show a dynamically consistent pattern of downward propagation over a period of ~45 days in response to positive Psw anomalies. When the solar irradiance is high, the signature of Psw is marked by a positive NAM anomaly descending from the stratosphere to the surface during winter. When the solar irradiance is low, the Psw signal has the opposite sign, occurs in spring, and is confined to the stratosphere. The negative Psw signal in the NAM under low solar irradiance conditions is primarily governed by enhanced vertical EP-flux divergence and a warmer polar region. The winter Psw signal under high solar irradiance conditions is associated with positive anomalies of the horizontal EP-flux divergence at 55°N–75°N and negative anomalies at 25°N–45°N, which corresponds to the positive NAM anomaly. The EP-flux divergence anomalies occur ~15 days ahead of the mean-flow changes. A significant equatorward shift of synoptic-scale Rossby wave breaking (RWB) near the tropopause is detected during January–March, corresponding to increased anticyclonic RWB and a decrease in cyclonic RWB. We suggest that the barotropic instability associated with asymmetric ozone in the upper stratosphere and the baroclinic instability associated with the polar vortex in the middle and lower stratosphere play a critical role for the winter signal and its downward propagation.
Resumo:
Long-term propagation of inner ear-derived progenitor/stem cells beyond the third generation and differentiation into inner ear cell types has been shown to be feasible, but challenging. We investigated whether the known neuroprotective guanidine compound creatine (Cr) promotes propagation of inner ear progenitor/stem cells as mitogen-expanded neurosphere cultures judged from the formation of spheres over passages. In addition, we studied whether Cr alone or in combination with brain-derived neurotrophic factor (BDNF) promotes neuronal differentiation of inner ear progenitors. For this purpose, early postnatal rat spiral ganglia, utricle, and organ of Corti-derived progenitors were grown as floating spheres in the absence (controls) or presence of Cr (5 mM) from passage 3 onward. Similarly, dissociated sphere-derived cultures were differentiated for 14 days in the presence or absence of Cr (5 mM) and spiral ganglia sphere-derived cultures in a combination of Cr with the neurotrophin BDNF (50 ng/ml). We found that the cumulative total number of spheres over all passages was significantly higher after Cr supplementation as compared with controls in all the three inner ear cultures. In contrast, sphere sizes were not affected by the administration of Cr. Administration of Cr during differentiation of spiral ganglia cells resulted in a significantly higher density of β-III-tubulin-positive cells compared with controls, whereas densities of myosin VIIa-positive cells in cultures of utricle and organ of Corti were not affected by the treatment. Importantly, a combination of Cr with the neurotrophin BDNF resulted in further significantly increased densities of β-III-tubulin-positive cells in cultures of spiral ganglia cells as compared with single treatments. In sum, Cr promoted continuing propagation of rat inner ear-derived progenitor cells and supported specifically in combination with BDNF the differentiation of neuronal cell types from spiral ganglion-derived spheres.
Resumo:
Mycobacterium bovis populations in countries with persistent bovine tuberculosis usually show a prevalent spoligotype with a wide geographical distribution. This study applied mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing to a random panel of 115 M. bovis isolates that are representative of the most frequent spoligotype in the Iberian Peninsula, SB0121. VNTR typing targeted nine loci: ETR-A (alias VNTR2165), ETR-B (VNTR2461), ETR-D (MIRU4, VNTR580), ETR-E (MIRU31, VNTR3192), MIRU26 (VNTR2996), QUB11a (VNTR2163a), QUB11b (VNTR2163b), QUB26 (VNTR4052), and QUB3232 (VNTR3232). We found a high degree of diversity among the studied isolates (discriminatory index [D] = 0.9856), which were split into 65 different MIRU-VNTR types. An alternative short-format MIRU-VNTR typing targeting only the four loci with the highest variability values was found to offer an equivalent discriminatory index. Minimum spanning trees using the MIRU-VNTR data showed the hypothetical evolution of an apparent clonal group. MIRU-VNTR analysis was also applied to the isolates of 176 animals from 15 farms infected by M. bovis SB0121; in 10 farms, the analysis revealed the coexistence of two to five different MIRU types differing in one to six loci, which highlights the frequency of undetected heterogeneity.
Resumo:
Untreated AKR mice develop spontaneous thymic lymphomas by 6-12 months of age. Lymphoma development is accelerated when young mice are injected with the carcinogen N-methyl-N-nitrosourea (MNU). Selected molecular and cellular events were compared during the latent period preceding "spontaneous" (retrovirally-induced) and MNU-induced thymic lymphoma development in AKR mice. These studies were undertaken to test the hypothesis that thymic lymphomas induced in the same inbred mouse strain by endogenous retroviruses and by a chemical carcinogen develop by different mechanisms.^ Immunofluorescence analysis of differentiation antigens showed that most MNU-induced lymphomas express an immature CD4-8+ profile. In contrast, spontaneous lymphomas represent each of the major lymphocyte subsets. These data suggest involvement of different target populations in MNU-induced and spontaneous lymphomas. Analyses at intervals after MNU treatment revealed selective expansion of the CD4-8+ J11d+ thymocyte subset at 8-10 weeks post-MNU in 68% of the animals examined, suggesting that these cells are targets for MNU-induced lymphomagenesis. Untreated age-matched animals showed no selective expansion of thymocyte subsets.^ Previous data have shown that both spontaneous and MNU-induced lymphomas are monoclonal or oligoclonal. Distinct rearrangement patterns of the J$\sb2$ region of the T-cell receptor $\beta$-chain showed emergence of clonal thymocyte populations beginning at 6-7 weeks after MNU treatment. However, lymphocytes from untreated animals showed no evidence of clonal expansion at the time intervals investigated.^ Activation of c-myc frequently occurs during development of B- and T- cell lymphomas. Both spontaneous and MNU-induced lymphomas showed increased c-myc transcript levels. Increased c-myc transcription was first detected at 6 weeks post-MNU, and persisted throughout the latent period. However, untreated animals showed no increases in c-myc transcripts at the time intervals examined. Another nuclear oncogene, c-fos, did not display a similar change in RNA transcription during the latent period.^ These results supports the hypothesis that MNU-induced and spontaneous tumors develop by multi-step pathways which are distinct with respect to the target cell population affected. Clonal emergence and c-myc deregulation are important steps in the development of both MNU-induced and spontaneous tumors, but the onset of these events is later in spontaneous tumor development. ^
Resumo:
We use a fracture mechanics model to study subcritical propagation and coalescence of single and collinear oil-filled cracks during conversion of kerogen to oil. The subcritical propagation distance, propagation duration, crack coalescence and excess oil pressure in the crack are determined using the fracture mechanics model together with the kinetics of kerogen-oil transformation. The propagation duration for the single crack is governed by the transformation kinetics whereas the propagation duration for the multiple collinear cracks may vary by two orders of magnitude depending on initial crack spacing. A large amount of kerogen (>90%) remains unconverted when the collinear cracks coalesce and the new, larger cracks resulting from coalescence will continue to propagate with continued kerogen-oil conversion. The excess oil pressure on the crack surfaces drops precipitously when the collinear cracks are about to coalesce, and crack propagation duration and oil pressure on the crack surfaces are strongly dependent on temperature. Citation: Jin, Z.-H., S. E. Johnson, and Z. Q. Fan (2010), Subcritical propagation and coalescence of oil-filled cracks: Getting the oil out of low-permeability source rocks, Geophys. Res. Lett., 37, L01305, doi:10.1029/2009GL041576.
Resumo:
Dike swarms consisting of tens to thousands of subparallel dikes are commonly observed at Earth's surface, raising the possibility of simultaneous propagation of two or more dikes at various stages of a swarm's development. The behavior of multiple propagating dikes differs from that of a single dike owing to the interacting stress fields associated with each dike. We analyze an array of parallel, periodically spaced dikes that grow simultaneously from an overpressured source into a semi-infinite, linear elastic host rock. To simplify the analysis, we assume steady state (constant velocity) magma flow and dike propagation. We use a perturbation method to analyze the coupled, nonlinear problem of multiple dike propagation and magma transport. The stress intensity factor at the dike tips and the opening displacements of the dike surfaces are calculated. The numerical results show that dike spacing has a profound effect on the behavior of dike propagation. The stress intensity factors at the tips of parallel dikes decrease with a decrease in dike spacing and are significantly smaller than that for a single dike with the same length. The reduced stress intensity factor indicates that, compared to a single dike, propagation of parallel dikes is more likely to be arrested under otherwise the same conditions. It also implies that fracture toughness of the host rock in a high confining pressure environment may not be as high as inferred from the propagation of a single dike. Our numerical results suggest fracture toughness values on the order of 100 MPa root m. The opening displacements for parallel dikes are smaller than that for a single dike, which results in higher magma pressure gradients in parallel dikes and lower flux of magma transport.
Resumo:
We present a fracture-mechanics-based formulation to investigate primary oil migration through the propagation of an array of periodic, parallel fractures in a sedimentary rock with elevated pore fluid pressure. The rock is assumed to be a linearly elastic medium. The fracture propagation and hence oil migration velocity are determined using a fracture mechanics criterion together with the lubrication theory of fluid mechanics. We find that fracture interactions have profound effects on the primary oil migration behavior. For a given fracture length, the mass flux of oil migration decreases dramatically with an increase in fracture density. The reduced oil flux is due to the decreased fracture propagation velocity as well as the narrowed fracture opening that result from the fracture interactions.
Resumo:
The lack of a permissive cell culture system hampers the study of human parvovirus B19 (B19V). UT7/Epo is one of the few established cell lines that can be infected with B19V but generates none or few infectious progeny. Recently, hypoxic conditions or the use of primary CD36+ erythroid progenitor cells (CD36+ EPCs) have been shown to improve the infection. These novel approaches were evaluated in infection and transfection experiments. Hypoxic conditions or the use of CD36+ EPCs resulted in a significant acceleration of the infection/transfection and a modest increase in the yield of capsid progeny. However, under all tested conditions, genome encapsidation was impaired seriously. Further analysis of the cell culture virus progeny revealed that differently to the wild-type virus, the VP1 unique region (VP1u) was exposed partially and was unable to become further externalized upon heat treatment. The fivefold axes pore, which is used for VP1u externalization and genome encapsidation, might be constricted by the atypical VP1u conformation explaining the packaging failure. Although CD36+ EPCs and hypoxia facilitate B19V infection, large quantities of infectious progeny cannot be generated due to a failure in genome encapsidation, which arises as a major limiting factor for the in vitro propagation of B19V.
Resumo:
An in vitro system allowing the culture of ovine bone marrow-derived macrophages (BMMs) is described. Bone marrow (BM) cells from the sternum of 4- to 9-month-old sheep were cultured in liquid suspension in hydrophobic bags with medium containing 20% autologous serum and 20% fetal calf serum (FCS). Cells with macrophage characteristics were positively selected and increased four- to five-fold between day (d) 0 and d18. Granulocytes and cells of lymphoid appearance including progenitor cells were negatively selected and were diminished 50-fold during this 18-d culture. The addition of macrophage colony-stimulating factor (M-CSF)-containing supernatants to liquid cultures did not significantly improve the yield of BMM in 18-d cultures. In contrast, cell survival at d6 and macrophage cell yield at d18 depended on the concentration and source of serum in the culture medium. FCS and 1:1 mixtures of FCS and autologous serum were superior to autologous serum alone. Analysis of growth requirements of ovine BMMs suggested that they are under more complex growth control than their murine counterparts. In an [3H]thymidine incorporation assay with BM cells collected at different times of culture, d3 or d4 BM cells responded to human recombinant M-CSF, human recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF), bovine GM-CSF, murine M-CSF or murine M-CSF-containing supernatants, and bovine interleukin 1 beta (IL-1 beta) in decreasing order of magnitude. Likewise, pure murine BMM populations harvested at d6 responded to homologous GM-CSF, IL-3, and human or murine M-CSF. FCS did not stimulate the proliferation of murine BMMs (d6) and of ovine BM cells (d3 or d4). In contrast, ovine BM cells harvested at d12 responded to FCS by proliferation in a dose-dependent manner but failed to proliferate in the presence of human or murine M-CSF or M-CSF-containing supernatants of mouse and sheep fibroblasts containing mouse macrophage growth-promoting activity. Likewise, various cytokine-containing supernatants and recombinant cytokines (murine IL-3, murine and human GM-CSF, murine and bovine IL-1 beta) did not promote proliferation of ovine d12 BM cells to an extent greater than that achieved with 15% FCS alone. Thus, ovine BMM proliferation is under the control of at least two factors acting in sequence, M-CSF and an unidentified factor contained in FCS. The ovine BMM culture system may provide a model for the analysis of myelomonocytopoiesis in vitro.
Resumo:
This bipartite comparative study aims at inspecting the similarities and differences between the Jones and Stokes–Mueller formalisms when modeling polarized light propagation with numerical simulations of the Monte Carlo type. In this first part, we review the theoretical concepts that concern light propagation and detection with both pure and partially/totally unpolarized states. The latter case involving fluctuations, or “depolarizing effects,” is of special interest here: Jones and Stokes–Mueller are equally apt to model such effects and are expected to yield identical results. In a second, ensuing paper, empirical evidence is provided by means of numerical experiments, using both formalisms.