947 resultados para Chaotic synchronization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of a pair of satellites similar to Enceladus-Dione is investigated with a two-degrees-of-freedom model written in the domain of the planar general three-body problem. Using surfaces of section and spectral analysis methods, we study the phase space of the system in terms of several parameters, including the most recent data. A detailed study of the main possible regimes of motion is presented, and in particular we show that, besides the two separated resonances, the phase space is replete of secondary resonances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the dynamics of a Duffing oscillator driven by a limited power supply, such that the source of forcing is considered to be another oscillator, coupled to the first one. The resulting dynamics come from the interaction between both systems. Moreover, the Duffing oscillator is subjected to collisions with a rigid wall (amplitude constraint). Newtonian laws of impact are combined with the equations of motion of the two coupled oscillators. Their solutions in phase space display periodic (and chaotic) attractors, whose amplitudes, especially when they are too large, can be controlled by choosing the wall position in suitable ways. Moreover, their basins of attraction are significantly modified, with effects on the final state system sensitivity. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the phenomenon of unlimited energy growth for a classical particle moving in the annular billiard. The model is considered under two different geometrical situations: static and breathing boundaries. We show that when the dynamics is chaotic for the static case, the introduction of a time-dependent perturbation allows that the particle experiences the phenomenon of Fermi acceleration even when the oscillations are periodic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unlimited energy growth ( Fermi acceleration) of a classical particle moving in a billiard with a parameter-dependent boundary oscillating in time is numerically studied. The shape of the boundary is controlled by a parameter and the billiard can change from a focusing one to a billiard with dispersing pieces of the boundary. The complete and simplified versions of the model are considered in the investigation of the conjecture that Fermi acceleration will appear in the time-dependent case when the dynamics is chaotic for the static boundary. Although this conjecture holds for the simplified version, we have not found evidence of Fermi acceleration for the complete model with a breathing boundary. When the breathing symmetry is broken, Fermi acceleration appears in the complete model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We performed computer simulations of interstellar cloud-cloud collisions using the three-dimensional smoothed particle magnetohydrodynamics method. In order to study the role of the magnetic field on the process of collision-triggered fragmentation, we focused our attention on head-on supersonic collisions between two identical spherical molecular-clouds. Two extreme configurations of the magnetic field were adopted: parallel and perpendicular to the initial clouds motion. The initial magnetic field strength was approximately 12.0 muG. In the parallel case, much more of the collision debris were retained in the shocking region than in the non-magnetic case where gas escaped freely throughout the symmetry plane. Differently from the non-magnetic case, eddy-like vortices were formed. The regions of highest vorticity and the the regions of highest density are offset. We found clumps formation only in the parallel case, however, they were larger, hotter and less dense than in the analogous non-magnetic case. In the perpendicular case, the compressed field works as a magnetic wall, preventing a stronger compression of the colliding clouds. This last effect inhibits direct contact of the two clouds. In both cases, we found that the field lines show a chaotic aspect in large scales. Also, the field magnitude is considerably amplified in the shock layer. However, the field distribution is almost coherent in the higher density regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we consider a self-excited mechanical system by dry friction in order to study the bifurcational behavior of the arisen vibrations. The oscillating system consists of a mass block-belt-system which is self-excited by static and Coulomb friction. We analyze the system behavior numerically through bifurcation diagrams, phase portraits, frequency spectra and Poincare maps, which show the existence of nonhomoclinic and homoclinic chaos and a route to homoclinic chaos. The homoclinic chaos is also analyzed analytically via the Melnikov prediction method. The system dynamic is characterized by the existence of two potential wells in the phase plane which exhibit rich bifurcational and chaotic behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tuned liquid column dampers are U-tubes filled with some liquid, acting as an active vibration damper in structures of engineering interest like buildings and bridges. We study the effect of a tuned liquid column damper in a vibrating system consisting of a cart which vibrates under driving by a source with limited power supply (non-ideal excitation). The effect of a liquid damper is studied in some dynamical regimes characterized by coexistence of both periodic and chaotic motion. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper concerns a type of rotating machine (centrifugal vibrator), which is supported on a nonlinear spring. This is a nonideal kind of mechanical system. The goal of the present work is to show the striking differences between the cases where we take into account soft and hard spring types. For soft spring, we prove the existence of homoclinic chaos. By using the Melnikov's Method, we show the existence of an interval with the following property: if a certain parameter belongs to this interval, then we have chaotic behavior; otherwise, this does not happen. Furthermore, if we use an appropriate damping coefficient, the chaotic behavior can be avoided. For hard spring, we prove the existence of Hopf's Bifurcation, by using reduction to Center Manifolds and the Bezout Theorem (a classical result about algebraic plane curves).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamical properties of a classical particle bouncing between two rigid walls, in the presence of a drag force, are studied for the case where one wall is fixed and the other one moves periodically in time. The system is described in terms of a two-dimensional nonlinear map obtained by solution of the relevant differential equations. It is shown that the structure of the KAM curves and the chaotic sea is destroyed as the drag force is introduced. At high energy, the velocity of the particle decreases linearly with increasing iteration number, but with a small superimposed sinusoidal modulation. If the motion passes near enough to a fixed point, the particle approaches it exponentially as the iteration number evolves, with a speed of approach that depends on the strength of the drag force. For a simplified version of the model it is shown that, at low energies corresponding to the region of the chaotic sea in the non-dissipative model, the particle wanders in a chaotic transient that depends on the strength of the drag coefficient. However, the KAM islands survive in the presence of dissipation. It is confirmed that the fixed points and periodic orbits go over smoothly into the orbits of the well-known (non-dissipative) Fermi-Ulam model as the drag force goes to zero.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate numerically the dynamical behavior of a non-ideal mechanical system consisting of a vibrating cart containing a particle which can oscillate back and forth colliding with walls carved in the cart. This system represents an impact damper for controlling high-amplitude vibrations and chaotic motion. The motion of the cart is induced by an in-board non-ideal motor driving an unbalanced rotor. We study the phase space of the cart and the bouncing particle, in particular the intertwined smooth and fractal basin boundary structure. The control of the chaotic motion of the cart due to the particle impacts is also investigated. Our numerical results suggests that impact dampers of small masses are effective to suppress chaos, but they also increase the final-state sensitivity of the system in its phase space. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some scaling properties for classical light ray dynamics inside a periodically corrugated waveguide are studied by use of a simplified two-dimensional nonlinear area-preserving map. It is shown that the phase space is mixed. The chaotic sea is characterized using scaling arguments revealing critical exponents connected by an analytic relationship. The formalism is widely applicable to systems with mixed phase space, and especially in studies of the transition from integrability to nonintegrability, including that in classical billiard problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we deal with a micro electromechanical system (MEMS), represented by a micro-accelerometer. Through numerical simulations, it was found that for certain parameters, the system has a chaotic behavior. The chaotic behaviors in a fractional order are also studied numerically, by historical time and phase portraits, and the results are validated by the existence of positive maximal Lyapunov exponent. Three control strategies are used for controlling the trajectory of the system: State Dependent Riccati Equation (SDRE) Control, Optimal Linear Feedback Control, and Fuzzy Sliding Mode Control. The controls proved effective in controlling the trajectory of the system studied and robust in the presence of parametric errors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some dynamic properties for a light ray suffering specular reflections inside a periodically corrugated waveguide are studied. The dynamics of the model is described in terms of a two dimensional nonlinear area preserving map. We show that the phase space is mixed in the sense that there are KAM islands surrounded by a large chaotic sea that is confined by two invariant spanning curves. We have used a connection with the Standard Mapping near a transition from local to global chaos and found the position of these two invariant spanning curves limiting the size of the chaotic sea as function of the control parameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)