1000 resultados para Cell Compartmentation
Resumo:
A newly designed fluorescent aluminum(III) complex (L'-Al; 2) of a structurally characterized non-fluorescent rhodamine Schiff base (L) has been isolated in pure form and characterized using spectroscopic and physico-chemical methods with theoretical density functional theory (DFT) support. On addition of Al(III) ions to a solution of L in HEPES buffer (1 mM, pH 7.4; EtOH-water, 1 : 3 v/v) at 25 degrees C, the systematic increase in chelation-enhanced fluorescence (CHEF) enables the detection of Al(III) ions as low as 60 nM with high selectivity, unaffected by the presence of competitive ions. Interestingly, the Al(III) complex (L'-Al; 2) is specifically able to detect fluoride ions by quenching the fluorescence in the presence of large amounts of other anions in the HEPES buffer (1 mM, pH 7.4) at 25 degrees C. On the basis of our experimental and theoretical findings, the addition of Al3+ ions to a solution of L helps to generate a new fluorescence peak at 590 nm, due to the selective binding of Al3+ ions with L in a 1 : 1 ratio with a binding constant (K) of 8.13 x 10(4) M-1. The Schiff base L shows no cytotoxic effect, and it can therefore be employed for determining the intracellular concentration of Al3+ and F-ions by 2 in living cells using fluorescence microscopy.
Resumo:
DNA intercalators are one of the interesting groups in cancer chemotherapy. The development of novel anticancer small molecule has gained remarkable interest over the last decade. In this study, we synthesized and investigated the ability of a tetracyclic-condensed quinoline compound, 4-butylaminopyrimido4',5':4,5]thieno(2,3-b)quinoline (BPTQ), to interact with double-stranded DNA and inhibit cancer cell proliferation. Circular dichroism, topological studies, molecular docking, absorbance, and fluorescence spectral titrations were employed to study the interaction of BPTQ with DNA. Cytotoxicity was studied by performing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assay. Further, cell cycle analysis by flow cytometry, annexin V staining, mitochondrial membrane potential assay, DNA fragmentation, and western blot analysis were used to elucidate the mechanism of action of BPTQ at the cellular level. Spectral, topological, and docking studies confirmed that BPTQ is a typical intercalator of DNA. BPTQ induces dose-dependent inhibitory effect on the proliferation of cancer cells by arresting cells at S and G2/M phase. Further, BPTQ activates the mitochondria-mediated apoptosis pathway, as explicated by a decrease in mitochondrial membrane potential, increase in the Bax:Bcl-2 ratio, and activation of caspases. These results confirmed that BPTQ is a DNA intercalative anticancer molecule, which could aid in the development of future cancer therapeutic agents.
Resumo:
Insulin like growth factor binding protein 2 (IGFBP2) is highly up regulated in glioblastoma (GBM) tissues and has been one of the prognostic indicators. There are compelling evidences suggesting important roles for IGFBP2 in glioma cell proliferation, migration and invasion. Extracellular IGFBP2 through its carboxy terminal arginine glycine aspartate (RGD) motif can bind to cell surface alpha 5 beta 1 integrins and activate pathways downstream to integrin signaling. This IGFBP2 activated integrin signaling is known to play a crucial role in IGFBP2 mediated invasion of glioma cells. Hence a molecular inhibitor of carboxy terminal domain of IGFBP2 which can inhibit IGFBP2-cell surface interaction is of great therapeutic importance. In an attempt to develop molecular inhibitors of IGFBP2, we screened single chain variable fragment (scFv) phage display libraries, Tomlinson I (Library size 1.47 x 10(8)) and Tomlinson J (Library size 1.37 x 10(8)) using human recombinant IGFBP2. After screening we obtained three IGFBP2 specific binders out of which one scFv B7J showed better binding to IGFBP2 at its carboxy terminal domain, blocked IGFBP2-cell surface association, reduced activity of matrix metalloprotease 2 in the conditioned medium of glioma cells and inhibited IGFBP2 induced migration and invasion of glioma cells. We demonstrate for the first time that in vitro inhibition of extracellular IGFBP2 activity by using human scFv results in significant reduction of glioma cell migration and invasion. Therefore, the inhibition of IGFBP2 can serve as a potential therapeutic strategy in the management of GBM.
Resumo:
The plane of division of granule neuron progenitors (GNPs) was analysed with respect to the pial surface in P0 to P14 cerebellum and the results showed that there was a significant bias towards the plane of cell division being parallel to pial surface across this developmental window. In addition, the distribution of beta-Catenin in anaphase cells was analysed, which showed that there was a significant asymmetry in the distribution of beta-Catenin in dividing GNPs. Further, inhibition of Sonic Hedgehog (Shh) signalling had an effect on plane of cell division. Asymmetric distribution of beta-Catenin was shown to occur towards the source of a localized extracellular cue.
Resumo:
Statins are known to modulate cell surface cholesterol (CSC) and AMP-activated protein kinase (AMPK) in nonneural cells; however no study demonstrates whether CSC and AMPK may regulate simvastatin induced neuritogenesis (SIN). We found that simvastatin (SIM) maintains CSC as shown by Fillipin III staining, Flotillin-2 protein expression / localization and phosphorylation of various receptor tyrosine kinases (RTKs) in the plasma membrane. Modulation of CSC revealed that SIN is critically dependent on this CSC. Simultaneously, phospho array for mitogen activated protein kinases (MAPKs) revealed PI3K / Akt as intracellular pathway which modulates lipid pathway by inhibiting AMPK activation. Though, SIM led to a transient increase in AMPK phosphorylation followed by a sudden decline; the effect was independent of PI3K. Strikingly, AMPK phosphorylation was regulated by protein phosphatase 2A (PP2A) activity which was enhanced upon SIM treatment as evidenced by increase in threonine phosphorylation. Moreover, it was observed that addition of AMP analogue and PP2A inhibitor inhibited SIN. Biocomposition of neurites shows that lipids form a major part of neurites and AMPK is known to regulate lipid metabolism majorly through acetyl CoA carboxylase (ACC). AMPK activity is negative regulator of ACC activity and we found that phosphorylation of ACC started to decrease after 6 hrs which becomes more pronounced at 12 hrs. Addition of ACC inhibitor showed that SIN is dependent on ACC activity. Simultaneously, addition of Fatty acid synthase (FAS) inhibitor confirmed that endogenous lipid pathway is important for SIN. We further investigated SREBP-1 pathway activation which controls ACC and FAS at transcriptional level. However, SIM did not affect SREBP-1 processing and transcription of its target genes likes ACC1 and FAS. In conclusion, this study highlights a distinct role of CSC and ACC in SIN which might have implication in process of neuronal differentiation induced by other agents.
Resumo:
There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising ``multiantigen'' vaccine that elicits robust CMI. IMPORTANCE Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is currently available, and treatment is costly and often results in side effects, limiting the number of patients who are treated. Despite recent advances in treatment, prevention remains the key to efficient control and elimination of this virus. Here, we describe a novel DNA vaccine against hepatitis C virus that is capable of inducing robust cell-mediated immune responses in mice and is a promising vaccine candidate for humans.
Resumo:
Morphological changes in cells associated with disease states are often assessed using clinical microscopy. However, the changes in chemical composition of cells can also be used to detect disease conditions. Optical absorption measurements carried out on single cells using inexpensive sources, detectors can help assess the chemical composition of cells; thereby enable detection of diseases. In this article, we present a novel technique capable of simultaneously detecting changes in morphology and chemical composition of cells. The presented technique enables characterization of optical absorbance-based methods against microscopy for detection of disease states. Using the technique, we have been able to achieve a throughput of about 1000 cells per second. We demonstrate the proof-of-principle by detecting malaria in a given blood sample. The presented technique is capable of detecting very lower levels of parasitemia within time scales comparable to antigen-based rapid diagnostic tests.
Resumo:
Today single cell research is a great interest to analyze cell to cell or cell to environment behavior with their intracellular compounds, where bulk measurement can provide average value. To deliver biomolecules precise and localized way into single living cell with high transfection rate and high cell viability is a challenging and promisible task for biological and therapeutic research. In this report, we present a nano-localized single cell nano-electroporation technique, where electroporation take place in a very precise and localized area on a single cell membrane to achieve high efficient delivery with high cell viability. We fabricated 60nm gap with 40 nm triangular Indium Tin Oxide (ITO) based nano-eletcrode tip, which can intense electric field in a nano-localized area of a single cell to permeabilize cell membrane and deliver exogenous biomolecules from outside to inside of the cell. This device successfully deliver dyes, proteins into single cell with high cell viability (98%). The process not only control precise delivery mechanism into single cell with membrane reversibility, but also it can provide special, temporal and qualitative dosage control, which might be beneficial for therapeutic and biological cell studies.
Resumo:
Geocells are three-dimensional expandable panels with a wide range of applications in geotechnical engineering. A geocell is made up of many internally connected single cells. The current study discusses the joint strength and the wall deformation characteristics of a single cell when it is subjected to uniaxial compression. The study helps to understand the causes for the failure of the single cell in a cellular confinement system. Experimental studies were conducted on single cells with cell pockets filled up with three different infill materials, namely silty clay, sand, and the aggregates. The results of the experimental study revealed that the deformation of the geocell wall decreases with the increase in the friction angle of the infill material. Experimental results were also validated using numerical simulations carried out using Lagrangian analysis software. The experiment and the numerical results were found to be in good agreement with each other. A simple analytical model based on the theory of thin cylinders is also proposed to calculate the accumulated strain of the geocell wall. This model operates under a simple elastic solution framework. The proposed model slightly overestimates the strains as compared with experimental and numerical values. (C) 2014 American Society of Civil Engineers.
Resumo:
Identifying the structures of membrane bound proteins is critical to understanding their function in healthy and diseased states. We introduce a surface enhanced Raman spectroscopy technique which can determine the conformation of membrane-bound proteins, at low micromolar concentrations, and also in the presence of a substantial membrane-free fraction. Unlike conventional surface enhanced Raman spectroscopy, our approach does not require immobilization of molecules, as it uses spontaneous binding of proteins to lipid bilayer-encapsulated Ag nanoparticles. We apply this technique to probe membrane-attached oligomers of Amyloid-beta(40) (A beta(40)), whose conformation is keenly sought in the context of Alzheimer's disease. Isotope-shifts in the Raman spectra help us obtain secondary structure information at the level of individual residues. Our results show the presence of a beta-turn, flanked by two beta-sheet regions. We use solid-state NMR data to confirm the presence of the beta-sheets in these regions. In the membrane-attached oligomer, we find a strongly contrasting and near-orthogonal orientation of the backbone H-bonds compared to what is found in the mature, less-toxic A beta fibrils. Significantly, this allows a ``porin'' like beta-barrel structure, providing a structural basis for proposed mechanisms of A beta oligomer toxicity.
Resumo:
We have identified a potent antibacterial agent N-(4-sec-butylphenyl)-2-(thiophen-2-yl)-1H-benzod]imidazole-4-carboxa mide (BT-benzo-29) from a library of benzimidazole derivatives that stalled bacterial division by inhibiting FtsZ assembly. A short (5 min) exposure of BT-benzo-29 disassembled the cytokinetic Z-ring in Bacillus subtilis cells without affecting the cell length and nucleoids. BT-benzo-29 also perturbed the localization of early and late division proteins such as FtsA, ZapA and SepF at the mid-cell. Further, BT-benzo-29 bound to FtsZ with a dissociation constant of 24 +/- 3 m and inhibited the assembly and GTPase activity of purified FtsZ. A docking analysis suggested that BT-benzo-29 may bind to FtsZ at the C-terminal domain near the T7 loop. BT-benzo-29 displayed significantly weaker inhibitory effects on the assembly and GTPase activity of two mutants (L272A and V275A) of FtsZ supporting the prediction of the docking analysis. Further, BT-benzo-29 did not appear to inhibit DNA duplication and nucleoid segregation and it did not perturb the membrane potential of B. subtilis cells. The results suggested that BT-benzo-29 exerts its potent antibacterial activity by inhibiting FtsZ assembly. Interestingly, BT-benzo-29 did not affect the membrane integrity of mammalian red blood cells. BT-benzo-29 bound to tubulin with a much weaker affinity than FtsZ and exerted significantly weaker effects on mammalian cells than on the bacterial cells indicating that the compound may have a strong antibacterial potential.
Resumo:
Assemblages of circular tubes and circular honeycombs in close packed arrangement are presently both competing and complementing regular honeycomb structures (HCS). The intrinsic isotropy of bundled tubes/rings in hexagonal arrays restricts their use to applications with isotopic need. With the aim of extending the utility of tubes/rings assemblages to anisotropic needs, this paper explores the prospects of bundled tubes and circular honeycombs in a general diamond array structure (DAS) to cater these needs. To this end, effective transverse Young's moduli and Poisson's ratio for thick/thin DAS are obtained theoretically. Analysis frameworks including thin ring theory (TRT), curved beam theory (CBT) and elasticity formulations are tested and corroborated by FEA employing contact elements. Results indicate that TRT and CBT are reasonable for thin tubes and honeycombs. Nevertheless, TRT yields compact formulae to study the anisotropy ratio, moduli spectrum and sensitivity of the assemblage as a function of thicknesses and array structure. These formulae supplement designers as a guide to tailor the structures. On the other hand, elasticity formulation can estimate over a larger range including very thick tubes/rings. In addition, this formulation offers to estimate refined transverse strengths of assemblages. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We report the diffusion characteristics of water vapor through two different porous media, viz., membrane electrode assembly (MEA) and gas diffusion layer (GDL) in a nonoperational fuel cell. Tunable diode laser absorption spectroscopy (TDLAS) was employed for measuring water vapor concentration in the test channel. Effects of the membrane pore size and the inlet humidity on the water vapor transport are quantified through mass flux and diffusion coefficient. Water vapor transport rate is found to be higher for GDL than for MEA. The flexibility and wide range of application of TDLAS in a fuel cell setup is demonstrated through experiments with a stagnant flow field on the dry side.
Resumo:
Glioblastoma (GBM) is the most common malignant adult primary brain tumor. We profiled 724 cancer-associated proteins in sera of healthy individuals (n = 27) and GBM (n = 28) using antibody microarray. While 69 proteins exhibited differential abundance in GBM sera, a three-marker panel (LYAM1, BHE40 and CRP) could discriminate GBM sera from that of healthy donors with an accuracy of 89.7% and p < 0.0001. The high abundance of C-reactive protein (CRP) in GBM sera was confirmed in 264 independent samples. High levels of CRP protein was seen in GBM but without a change in transcript levels suggesting a non-tumoral origin. Glioma-secreted Interleukin 6 (IL6) was found to induce hepatocytes to secrete CRP, involving JAK-STAT pathway. The culture supernatant from CRP-treated microglial cells induced endothelial cell survival under nutrient-deprivation condition involving CRP-Fc gamma RIII signaling cascade. Transcript profiling of CRP-treated microglial cells identified Interleukin 1 beta (IL1 beta) present in the microglial secretome as the key mediator of CRP-induced endothelial cell survival. IL1 beta neutralization by antibody-binding or siRNA-mediated silencing in microglial cells reduced the ability of the supernatant from CRP-treated microglial cells to induce endothelial cell survival. Thus our study identifies a serum based three-marker panel for GBM diagnosis and provides leads for developing targeted therapies. Biological significance A complex antibody microarray based serum marker profiling identified a three-marker panel - LYAM1, BHE40 and CRP as an accurate discriminator of glioblastoma sera from that of healthy individuals. CRP protein is seen in high levels without a concomitant increase of CRP transcripts in glioblastoma. Glioma-secreted IL6 induced hepatocytes to produce CRP in a JAK-STAT signaling dependent manner. CRP induced microglial cells to release IL1 beta which in turn promoted endothelial cell survival. This study, besides defining a serum panel for glioblastoma discrimination, identified IL1 beta as a potential candidate for developing targeted therapy. (C) 2015 Elsevier B.V. All rights reserved.