972 resultados para CDPdiacylglycerol-Serine O-Phosphatidyltransferase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic obstructive pulmonary disease (COPD) is characterized by emphysema and chronic bronchitis and is a leading cause of morbidity and mortality worldwide. Tobacco smoke and deficiency in α1-antitrypsin (AAT) are the most prominent environmental and genetic risk factors, respectively. Yet the pathogenesis of COPD is not completely elucidated. Disease progression appears to include a vicious circle driven by self-perpetuating lung inflammation, endothelial and epithelial cell death, and proteolytic degradation of extracellular matrix proteins. Like AAT, serpinB1 is a potent inhibitor of serine proteases including neutrophil elastase and cathepsin G. Because serpinB1 is expressed in myeloid and lung epithelial cells and is protective during lung infections, we investigated the role of serpinB1 in preventing age-related and cigarette smoke-induced emphysema in mice. Fifteen-month-old mice showed increased lung volume and decreased pulmonary function compared with young adult mice (3 mo old), but no differences were observed between serpinB1-deficient (KO) and wild-type (WT) mice. Chronic exposure to secondhand cigarette smoke resulted in structural emphysematous changes compared with respective control mice, but no difference in lung morphometry was observed between genotypes. Of note, the different pattern of stereological changes induced by age and cigarette smoke suggest distinct mechanisms leading to increased airway volume. Finally, expression of intracellular and extracellular protease inhibitors were differently regulated in lungs of WT and KO mice following smoke exposure; however, activity of proteases was not significantly altered. In conclusion, we showed that, although AAT and serpinB1 are similarly potent inhibitors of neutrophil proteases, serpinB1 deficiency is not associated with more severe emphysema.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytochrome P450c17 catalyzes 17 alpha-hydroxylation needed for cortisol synthesis and 17,20 lyase activity needed to produce sex steroids. Serine phosphorylation of P450c17 specifically increases 17,20 lyase activity, but the physiological factors regulating this effect remain unknown. Treating human adrenal NCI-H295A cells with the phosphatase inhibitors okadaic acid, fostriecin, and cantharidin increased 17,20 lyase activity, suggesting involvement of protein phosphatase 2A (PP2A) or 4 (PP4). PP2A but not PP4 inhibited 17,20 lyase activity in microsomes from cultured cells, but neither affected 17 alpha-hydroxylation. Inhibition of 17,20 lyase activity by PP2A was concentration-dependent, could be inhibited by okadaic acid, and was restored by endogenous protein kinases. PP2A but not PP4 coimmunoprecipitated with P450c17, and suppression of PP2A by small interfering RNA increased 17,20 lyase activity. Phosphoprotein SET found in adrenals inhibited PP2A, but not PP4, and fostered 17,20 lyase activity. The identification of PP2A and SET as post-translational regulators of androgen biosynthesis suggests potential additional mechanisms contributing to adrenarche and hyperandrogenic disorders such as polycystic ovary syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tight regulation of granulocyte chemotaxis is crucial for initiation and resolution of inflammation. Here, we show that DAPK2, a Ca(2+)/CaM-sensitive serine/threonine kinase known to modulate cell death in various cell types, is a novel regulator of migration in granulocytes. We demonstrate that human neutrophils and eosinophils express DAPK2 but unlike other leukocytes, no DAPK1 or DAPK3 protein. When DAPK activities were blocked by inhibitors, we found that neither granulocyte lifespan nor phagocytosis was affected. However, such pharmacological inactivation of DAPK activity abolished motility of granulocytes in response to intermediary but not end-target chemoattractants ex vivo. The defect in chemotaxis in DAPK2-inactive granulocytes is likely a result of reduced polarization of the cells, mediated by a lack of MLC phosphorylation, resulting in radial F-actin and pseudopod formation. As neutrophils treated with DAPKi also showed reduced recruitment to the site of inflammation in a mouse peritonitis model, DAPK2 may be a novel target for anti-inflammatory therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The serine protease CAP1/Prss8 is crucial for skin barrier function, lung alveolar fluid clearance and has been unveiled as diagnostic marker for specific cancer types. Here, we show that a constitutive knockout of CAP1/Prss8 leads to embryonic lethality. These embryos presented no specific defects, but it is during this period, and in particular at E13.5, that wildtype placentas show an increased expression of CAP1/Prss8, thus suggesting a placental defect in the knockout situation. The placentas of knockout embryos exhibited significantly reduced vascular development and incomplete cellular maturation. In contrary, epiblast-specific deletion of CAP1/Prss8 allowed development until birth. These CAP1/Prss8-deficient newborns presented abnormal epidermis, and died soon after birth due to impaired skin function. We thus conclude that a late placental insufficiency might be the primary cause of embryonic lethality in CAP1/Prss8 knockouts. This study highlights a novel and crucial role for CAP1/Prss8 in placental development and function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-content screening led to the identification of the N-isobutylamide guineensine from Piper nigrum as novel nanomolar inhibitor (EC50 = 290 nM) of cellular uptake of the endocannabinoid anandamide (AEA). Noteworthy, guineensine did not inhibit endocannabinoid degrading enzymes fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL) nor interact with cannabinoid receptors or fatty acid binding protein 5 (FABP5), a major cytoplasmic AEA carrier. Activity-based protein profiling showed no inhibition of serine hydrolases. Guineensine also inhibited the cellular uptake of 2-arachidonoylglycerol (2-AG). Preliminary structure–activity relationships between natural guineensine analogs indicate the importance of the alkyl chain length interconnecting the pharmacophoric isobutylamide and benzodioxol moieties for AEA cellular uptake inhibition. Guineensine dose-dependently induced cannabimimetic effects in BALB/c mice shown by strong catalepsy, hypothermia, reduced locomotion and analgesia. The catalepsy and analgesia were blocked by the CB1 receptor antagonist rimonabant (SR141716A). Guineensine is a novel plant natural product which specifically inhibits endocannabinoid uptake in different cell lines independent of FAAH. Its scaffold may be useful to identify yet unknown targets involved in endocannabinoid transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone marrow (BM) holds a large reserve of polymorphonuclear neutrophils (PMNs) that are rapidly mobilized to the circulation and tissues in response to danger signals. SerpinB1 is a potent inhibitor of neutrophil serine proteases neutrophil elastase (NE) and cathepsin G (CG). SerpinB1 deficiency (sB1(-/-)) results in a severe reduction of the BM PMN reserve and failure to clear bacterial infection. Using BM chimera, we found that serpinB1 deficiency in BM cells was necessary and sufficient to reproduce the BM neutropenia of sB1(-/-) mice. Moreover, we showed that genetic deletion of CG, but not NE, fully rescued the BM neutropenia in sB1(-/-) mice. In mixed BM chimera and in vitro survival studies, we showed that CG modulates sB1(-/-) PMN survival through a cell-intrinsic pathway. In addition, membrane permeabilization by lysosomotropic agent l-leucyl-l-leucine methyl ester that allows cytosolic release of granule contents was sufficient to induce rapid PMN death through a CG-dependent pathway. CG-mediated PMN cytotoxicity was only partly blocked by caspase inhibition, suggesting that CG cleaves a distinct set of targets during apoptosis. In conclusion, we have unveiled a new cytotoxic function for the serine protease CG and showed that serpinB1 is critical for maintaining PMN survival by antagonizing intracellular CG activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Staphylococcus aureus is an opportunistic bacterial pathogen that can infect humans and other species. It utilizes an arsenal of virulence factors to cause disease, including secreted and cell wall anchored factors. Secreted toxins attack host cells, and pore-forming toxins destroy target cells by causing cell lysis. S. aureus uses cell-surface adhesins to attach to host molecules thereby facilitating host colonization. The Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) are a family of cell-wall anchored proteins that target molecules like fibronectin and fibrinogen. The Serine-aspartate repeat (Sdr) proteins are a subset of staphylococcal MSCRAMMs that share similar domain organization. Interestingly, the amino-terminus, is composed of three immunoglobulin-folded subdomains (N1, N2, and N3) that contain ligand-binding activity. Clumping factors A and B (ClfA and ClfB) and SdrG are Sdr proteins that bind to fibrinogen (Fg), a large, plasma glycoprotein that is activated during the clotting cascade to form fibrin. In addition to recognizing fibrinogen, ClfA and ClfB can bind to other host ligands. Analysis of S. aureus strains that cause osteomyelitis led to the discovery of the bone-sialoprotein-binding protein (Bbp), an Sdr protein. Because several MSCRAMMs target more than one molecule, I hypothesized that Bbp may recognize other host proteins. A ligand screen revealed that the recombinant construct BbpN2N3 specifically recognizes human Fg. Surface plasmon resonance was used to determine the affinity of BbpN2N3 for Fg, and a dissociation constant of 540 nM was determined. Binding experiments performed with recombinant Fg chains were used to map the binding of BbpN2N3 to the Fg Aalpha chain. Additionally, Bbp expressed on the surface of Lactococcus lactis and S. aureus Newman bald mediated attachment of these bacteria to Fg Aalpha. To further characterize the interaction between the two proteins, isothermal titration calorimetry and inhibition assays were conducted with synthetic Fg Aalpha peptides. To determine the physiological implications of Bbp binding to Fg, the effect of Bbp on fibrinogen clotting was studied. Results show that Bbp binding to Fg inhibits the formation of fibrin. The consequences of this interaction are currently under investigation. Together, these data demonstrate that human Fg is a novel ligand for Bbp. This study indicates that the MSCRAMM Bbp may aid in staphylococcal attachment by targeting both an extracellular matrix and a blood plasma protein. The implications of these novel findings are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The induction of late long-term potentiation (L-LTP) involves complex interactions among second-messenger cascades. To gain insights into these interactions, a mathematical model was developed for L-LTP induction in the CA1 region of the hippocampus. The differential equation-based model represents actions of protein kinase A (PKA), MAP kinase (MAPK), and CaM kinase II (CAMKII) in the vicinity of the synapse, and activation of transcription by CaM kinase IV (CAMKIV) and MAPK. L-LTP is represented by increases in a synaptic weight. Simulations suggest that steep, supralinear stimulus-response relationships between stimuli (e.g., elevations in [Ca(2+)]) and kinase activation are essential for translating brief stimuli into long-lasting gene activation and synaptic weight increases. Convergence of multiple kinase activities to induce L-LTP helps to generate a threshold whereby the amount of L-LTP varies steeply with the number of brief (tetanic) electrical stimuli. The model simulates tetanic, -burst, pairing-induced, and chemical L-LTP, as well as L-LTP due to synaptic tagging. The model also simulates inhibition of L-LTP by inhibition of MAPK, CAMKII, PKA, or CAMKIV. The model predicts results of experiments to delineate mechanisms underlying L-LTP induction and expression. For example, the cAMP antagonist RpcAMPs, which inhibits L-LTP induction, is predicted to inhibit ERK activation. The model also appears useful to clarify similarities and differences between hippocampal L-LTP and long-term synaptic strengthening in other systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The retinoic acid inducible G protein coupled receptor family C group 5 type A (GPRC5A) is expressed preferentially in normal lung tissue but its expression is suppressed in the majority of human non-small cell lung cancer cell lines and tissues. This differential expression has led to the idea that GPRC5A is a potential tumor suppressor. This notion was supported by the finding that mice with a deletion of the Gprc5a gene develop spontaneous lung tumors. However, there are various tumor cell lines and tissue samples, including lung, that exhibit higher GPRC5A expression than normal tissues and some reports by other groups that GPRC5A transfection increased cell growth and colony formation. Obviously, GPRC5A has failed to suppress the development of the tumors and the growth of the cell lines where its expression is not suppressed. Since no mutations were detected in the coding sequence of GPRC5A in 20 NSCLC cell lines, it’s possible that GPRC5A acts as a tumor suppressor in the context of some cells but not in others. Alternatively, we raised the hypothesis that the GPRC5A protein may be inactivated by posttranslational modification(s) such as phosphorylation. It is well established that Serine/Threonine phosphorylation of G protein coupled receptors leads to their desensitization and in a few cases Tyrosine phosphorylation of GPCRs has been linked to internalization. Others reported that GPRC5A can undergo tyrosine phosphorylation in the cytoplasmic domain after treatment of normal human mammary epithelial cells (HMECs) with epidermal growth factor (EGF) or Heregulin. This suggested that GPRC5A is a substrate of EGFR. Therefore, we hypothesized that tyrosine phosphorylation of GPRC5A by activation of EGFR signaling may lead to its inactivation. To test this hypothesis, we transfected human embryo kidney (HEK) 293 cells with GPRC5A and EGFR expression vectors and confirmed that GPRC5A can be tyrosine phosphorylated after activation of EGFR by EGF. Further, we found that EGFR and GPRC5A can interact either directly or through other proteins and that inhibition of the EGFR kinase activity decreased the phosphorylation of GPRA5A and the interaction between GPRC5A and EGFR. In c-terminal of GPRC5A, There are four tyrosine residues Y317, Y320, Y347, Y350. We prepared GPRC5A mutants in which all four tyrosine residues had been replaced by phenylalanine (mutant 4F) or each individual Tyr residue was replaced by Phe and found that Y317 is the major site for EGFR mediated phosphorylation in the HEK293T cell line. We also found that EGF can induce GPRC5A internalization both in H1792 transient and stable cell lines. EGF also partially inactivates the suppressive function of GPRC5A on cell invasion activity and anchorage-independent growth ability of H1792 stable cell lines. These finding support our hypothesis that GPRC5A may be inactivated by posttranslational modification- tyrosine phosphorylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

E2F1 is a multi-faceted protein that has roles in a number of important cellular processes including cell cycle regulation, apoptosis, proliferation, and the DNA damage response (DDR). Moreover, E2F1 has opposing roles in tumor development, acting as either a tumor suppressor or an oncogene depending on the context. In human cancer, E2F1 is often deregulated through aberrations in the Rb-p16INK4a-cyclin D1 pathway. In these studies we examined three mechanisms by which E2F1 might mediate its tumor suppressive properties: p21-induced senescence, miRNAs, and the DNA damage response. We found that E2F1 acts as a tumor suppressor in response to ras activation through a non-apoptotic mechanism requiring ARF and p53, but not p21. However, p21-loss inhibited two-stage chemical carcinogenesis in FVB mice. In response to E2F1 overexpression, we found that 22 miRNAs are differentially regulated in mouse epidermis, including let-7a, let-7c, and miR-301. Additionally, regulation of miR-301 involves binding of E2F1 to its promoter. Finally, our data indicate a role for E2F1 at sites of DNA damage requiring E2F1’s phosphorylation at serine 31 which may involve DNA repair. Further, this role in the DDR may affect tumor aggressiveness and multiplicity. In all, we have explored three mechanisms for E2F1-induced tumor suppression and identified E2F1’s role in the DNA damage response as a likely contributor to this phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear factor kappaB (NF-kappaB) and activator protein 1 (AP-1) transcription factors regulate many important biological and pathological processes. Activation of NF-kappaB is regulated by the inducible phosphorylation of NF-kappaB inhibitor IkappaB by IkappaB kinase. In contrast, Fos, a key component of AP-1, is primarily transcriptionally regulated by serum responsive factors (SRFs) and ternary complex factors (TCFs). Despite these different regulatory mechanisms, there is an intriguing possibility that NF-kappaB and AP-1 may modulate each other, thus expanding the scope of these two rapidly inducible transcription factors. To determine whether NF-kappaB activity is involved in the regulation of fos expression in response to various stimuli, we analyzed activity of AP-1 and expression of fos, fosB, fra-1, fra-2, jun, junB, and junD, as well as AP-1 downstream target gene VEGF, using MDAPanc-28 and MDAPanc-28/IkappaBalphaM pancreatic tumor cells and wild-type, IKK1-/-, and IKK2-/- murine embryonic fibroblast cells. Our results show that elk-1, a member of TCFs, is one of the NF-kappaB downstream target genes. Inhibition of NF-kappaB activity greatly decreased expression of elk-1. Consequently, the reduced level of activated Elk-1 protein by extracellular signal-regulated kinase impeded constitutive, serum-, and superoxide-inducible c-fos expression. Thus, our study revealed a distinct and essential role of NF-kappaB in participating in the regulation of elk-1, c-fos, and VEGF expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most pancreatic cancer patients present with inoperable disease or develop metastases after surgery. Conventional therapies are usually ineffective in treating metastatic disease. It is evident that novel therapies remain to be developed. Transforming growth factor beta (TGF-beta) plays a key role in cancer metastasis, signaling through the TGF-beta type I/II receptors (TbetaRI/II). We hypothesized that targeting TbetaRI/II kinase activity with the novel inhibitor LY2109761 would suppress pancreatic cancer metastatic processes. The effect of LY2109761 has been evaluated on soft agar growth, migration, invasion using a fibroblast coculture model, and detachment-induced apoptosis (anoikis) by Annexin V flow cytometric analysis. The efficacy of LY2109761 on tumor growth, survival, and reduction of spontaneous metastasis have been evaluated in an orthotopic murine model of metastatic pancreatic cancer expressing both luciferase and green fluorescence proteins (L3.6pl/GLT). To determine whether pancreatic cancer cells or the cells in the liver microenvironment were involved in LY2109761-mediated reduction of liver metastasis, we used a model of experimental liver metastasis. LY2109761 significantly inhibited the L3.6pl/GLT soft agar growth, suppressed both basal and TGF-beta1-induced cell migration and invasion, and induced anoikis. In vivo, LY2109761, in combination with gemcitabine, significantly reduced the tumor burden, prolonged survival, and reduced spontaneous abdominal metastases. Results from the experimental liver metastasis models indicate an important role for targeting TbetaRI/II kinase activity on tumor and liver microenvironment cells in suppressing liver metastasis. Targeting TbetaRI/II kinase activity on pancreatic cancer cells or the cells of the liver microenvironment represents a novel therapeutic approach to prevent pancreatic cancer metastasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mitotic kinase Aurora B plays a pivotal role in mitosis and cytokinesis and governs the spindle assembly checkpoint which ensures correct chromosome segregation and normal progression through mitosis. Aurora B is overexpressed in breast and other cancers and may be an important molecular target for chemotherapy. Tumor suppressor p53 is the guardian of the genome and an important negative regulator of the cell cycle. Previously, it was unknown whether Aurora B and p53 had mutual regulation during the cell cycle. A small molecule specific inhibitor of Aurora B, AZD1152, gave us an indication that Aurora B negatively impacted p53 during interphase and mitosis. Here, we show the antineoplastic activity of AZD1152 in six human breast cancer cell lines, three of which overexpress HER2. AZD1152 specifically inhibited Aurora B kinase activity, thereby causing mitotic catastrophe, polyploidy and apoptosis, which in turn led to apoptotic death. Further, AZD1152 administration efficiently suppressed tumor growth in orthotopic and metastatic breast cancer cell xenograft models. Notably, it was found that the protein level of Aurora B kinase declined after inhibition of Aurora B kinase activity. Investigation of the underlying mechanism suggested that AZD1152 accelerated the protein turnover of Aurora B by enhancing its ubiquitination. As a consequence of inhibition of Aurora B, p53 levels were increased in tissue culture and murine models. This hinted at a possible direct interaction between p53 and Aurora B. Indeed, it was found that p53 and Aurora B exist in complex and interact directly during interphase and at the centromere in mitosis. Further, Aurora B was shown to phosphorylate p53 at several serine/threonine residues in the DNA binding domain and these events caused downregulation of p53 levels via ubiquitination mediated by Mdm2. Importantly, phosphorylation of threonine 211 was shown to reduce p53’s transcriptional activity while other phosphorylation sites did not. On a functional level, Aurora B was shown to reduce p53’s capacity to mediate apoptosis in response to the DNA damaging agent, cisplatin. These results define a novel mechanism for p53 inactivation by Aurora B and imply that oncogenic hyperactivation or overexpression of Aurora B may compromise p53’s tumor suppressor function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cells use molecular chaperones and proteases to implement the essential quality control mechanism of proteins. The DegP (HtrA) protein, essential for the survival of Escherichia coli cells at elevated temperatures with homologues found in almost all organisms uniquely has both functions. Here we report a mechanism for DegP to activate both functions via formation of large cage-like 12- and 24-mers after binding to substrate proteins. Cryo-electron microscopic and biochemical studies revealed that both oligomers are consistently assembled by blocks of DegP trimers, via pairwise PDZ1-PDZ2 interactions between neighboring trimers. Such interactions simultaneously eliminate the inhibitory effects of the PDZ2 domain. Additionally, both DegP oligomers were also observed in extracts of E. coli cells, strongly implicating their physiological importance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: SPARC is a matricellular protein, which, along with other extracellular matrix components including collagens, is commonly over-expressed in fibrotic diseases. The purpose of this study was to examine whether inhibition of SPARC can regulate collagen expression in vitro and in vivo, and subsequently attenuate fibrotic stimulation by bleomycin in mouse skin and lungs. METHODS: In in vitro studies, skin fibroblasts obtained from a Tgfbr1 knock-in mouse (TBR1CA; Cre-ER) were transfected with SPARC siRNA. Gene and protein expressions of the Col1a2 and the Ctgf were examined by real-time RT-PCR and Western blotting, respectively. In in vivo studies, C57BL/6 mice were induced for skin and lung fibrosis by bleomycin and followed by SPARC siRNA treatment through subcutaneous injection and intratracheal instillation, respectively. The pathological changes of skin and lungs were assessed by hematoxylin and eosin and Masson's trichrome stains. The expression changes of collagen in the tissues were assessed by real-time RT-PCR and non-crosslinked fibrillar collagen content assays. RESULTS: SPARC siRNA significantly reduced gene and protein expression of collagen type 1 in fibroblasts obtained from the TBR1CA; Cre-ER mouse that was induced for constitutively active TGF-beta receptor I. Skin and lung fibrosis induced by bleomycin was markedly reduced by treatment with SPARC siRNA. The anti-fibrotic effect of SPARC siRNA in vivo was accompanied by an inhibition of Ctgf expression in these same tissues. CONCLUSIONS: Specific inhibition of SPARC effectively reduced fibrotic changes in vitro and in vivo. SPARC inhibition may represent a potential therapeutic approach to fibrotic diseases.