948 resultados para CARBONATE PLATFORM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strontium, magnesium, oxygen, and carbon isotope profiles of the carbonate fraction of Hole 600C sediments support the lithologic and petrographic observations of extensive CaCO3 dissolution and recrystallization in the Pliocene basal section. Convective fluid flow through the sediments during the first 1 to 1.5 m.y. of the sedimentary history of these sediments may explain these observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbonate oozes recovered by hydraulic piston coring at DSDP Site 586 on Ontong-Java Plateau and Site 591 on Lord Howe Rise have carbonate contents that are consistently higher than 90% with only minor variations. Consequently, paleoceanographic signals were not recorded in detail in the carbonate contents. However, mass accumulation rates of carbonate increased in the late Miocene to mid-Pliocene, reflecting an increase in productivity, then abruptly decreased from mid-Pliocene to the present. Variations in relative abundances of coarse material (foraminifers) and fine material (mostly calcareous nannofossils) do reflect histories of current winnowing and biogenic productivity at the two sites. The late Miocene from 10.5 to 6.5 m.y. ago was a time of relatively constant, quiet, pelagic sedimentation with typical southwest Pacific sedimentation rates of 20-25 m/m.y. The average coarse-fraction abundances are always higher at Site 586 than at Site 591, which reflects winnowing at Site 586. These conditions were interrupted between 6.5 to 4.0 m.y. ago when increased upwelling at the Subtropical Divergence and the Equatorial Divergence produced greater productivity of calcareous planktonic organisms. The increased productivity is suggested by large increases in both fineand coarse-fraction material and constant ratios of foraminifers to nannofossils. The maximum of productivity was about 4.0 m.y. ago. This period of increased upwelling is coincident with the inferred development of the West Antarctic ice sheet. The high productivity was followed by an abrupt increase in winnowing about 2.5 m.y. ago at Site 591, but not until about 2.0 m.y. ago at Site 586. By 2.0 m.y. ago in the late Pliocene, quiet, pelagic sedimentation conditions prevailed, similar to those of the late Miocene. The last 0.7 m.y. has been a period of relatively intense winnowing on Lord Howe Rise but not on Ontong-Java Plateau. The coarse-fraction data have both long- and short-period fluctuations. Long-period fluctuations at Site 591 average about 850 *10**3 yr./cycle and those at Site 586 average 430*10**3 yr./cycle. The highest amplitudes are found in the Pliocene and Quaternary sections. The short-period fluctuations range from 100 to 48*10**3 yr./cycle at Site 586 and from 250 to 33 *10**3 yr./cycle at Site 591. The effects of local fluctuations of productivity and winnowing have modified the primary orbital forcing signals at these two sites to yield complex paleoceanographic records.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are few in situ studies showing how net community calcification (Gnet) of coral reefs is related to carbonate chemistry, and the studies to date have demonstrated different predicted rates of change. In this study, we measured net community production (Pnet), Gnet, and carbonate chemistry of a reef flat at One Tree Island, Great Barrier Reef. Diurnal pCO2 variability of 289-724 µatm was driven primarily by photosynthesis and respiration. The reef flat was found to be net autotrophic, with daily production of ? 35 mmol C/m**2/d and net calcification of ? 33 mmol C/m**2/d . Gnet was strongly related to Pnet, which drove a hysteresis pattern in the relationship between Gnet and aragonite saturation state (Omega ar). Although Pnet was the main driver of Gnet, Omega ar was still an important factor, where 95% of the variance in Gnet could be described by Pnet and Omega ar. Based on the observed in situ relationship, Gnet would be expected to reach zero when Omega ar is 2.5. It is unknown what proportion of a decline in Gnet would be through reduced calcification and what would occur through increased dissolution, but the results here support predictions that overall calcium carbonate production will decline in coral reefs as a result of ocean acidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continental margin off northeast Australia, comprising the Great Barrier Reef (GBR) platform and Queensland Trough, is the largest tropical mixed siliciclastic/carbonate depositional system in existence. We describe a suite of 35 piston cores and two Ocean Drilling Program (ODP) sites from a 130*240 km rectangular area of the Queensland Trough, the slope and basin setting east of the central GBR platform. Oxygen isotope records, physical property (magnetic susceptibility and greyscale) logs, analyses of bulk carbonate content and radiocarbon ages at these locations are used to construct a high resolution stratigraphy. This information is used to quantify mass accumulation rates (MARs) for siliciclastic and carbonate sediments accumulating in the Queensland Trough over the last 31,000 years. For the slope, highest MARs of siliciclastic sediment occur during transgression (1.0 Million Tonnes per year; MT/yr), and lowest MARs of siliciclastic (<0.1 MT/yr) and carbonate (0.2 MT/yr) sediment occur during sea level lowstand. Carbonate MARs are similar to siliciclastic MARs for transgression and highstand (1.1-1.4 MT/yr). In contrast, for the basin, MARs of siliciclastic (0-0.1 MT/yr) and carbonate sediment (0.2-0.4 MT/yr) are continuously low, and within a factor of two, for lowstand, transgression, and highstand. Generic models for carbonate margins predict that maximum and minimum carbonate MARs on the slope will occur during highstand and lowstand, respectively. Conversely, most models for siliciclastic margins suggest maximum and minimum siliciclastic MARs will occur during lowstand and transgression, respectively. Although carbonate MARs in the Queensland Trough are similar to those predicted for carbonate depositional systems, siliciclastic MARs are the opposite. Given uniform siliciclastic MARs in the basin through time, we conclude that terrigenous material is stored on the shelf during sea level lowstand, and released to the slope during transgression as wave driven currents transport shelf sediment offshore.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a differentiated carbonate budget for marine surface sediments from the Mid-Atlantic Ridge of the South Atlantic, with results based on carbonate grain-size composition. Upon separation into sand, silt, and clay sub-fractions, the silt grain-size distribution was measured using a SediGraph 5100. We found regionally characteristic grain-size distributions with an overall minimum at 8 µm equivalent spherical diameter (ESD). SEM observations reveal that the coarse particles (>8 µm ESD) are attributed to planktic foraminifers and their fragments, and the fine particles (<8 µm ESD) to coccoliths. On the basis of this division, the regional variation of the contribution of foraminifers and coccoliths to the carbonate budget of the sediments are calculated. Foraminifer carbonate dominates the sediments in mesotropic regions whereas coccoliths contribute most carbonate in oligotrophic regions. The grain size of the coccolith share is constant over water depth, indicating a lower susceptibility for carbonate dissolution compared to foraminifers. Finally, the characteristic grain-size distribution in fine silt (<8 µm ESD) is set into context with the coccolith assemblage counted and biometrically measured using a SEM. The coccoliths present in the silt fraction are predominantly large species (length > 4 µm). Smaller species (length < 4 µm) belong to the clay fraction (<2 µm ESD). The average length of most frequent coccolith species is connected to prominent peaks in grain-size distributions (ESD) with a shape factor. The area below Gaussian distributions fitted to these peaks is suggested as a way to quantitatively estimate the carbonate contribution of single coccolith species more precisely compared to conventional volume estimates. The quantitative division of carbonate into the fraction produced by coccoliths and that secreted by foraminifers enables a more precise estimate for source/sink relations of consumed and released CO2 in the carbon cycle. The allocation of coccolith length and grain size (ESD) suggests size windows for the separation or accumulation of distinct coccolith species in investigations that depend on non to slightly-mixed signals (e.g., isotopic studies).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High resolution studies from the Propeller Mound, a cold-water coral carbonate mound in the NE Atlantic, show that this mound consists of >50% carbonate justifying the name "carbonate mound". Through the last ~300,000 years approximately one third of the carbonate has been contributed by cold-water corals, namely Lophelia pertusa and Madrepora oculata. This coral bound contribution to the carbonate budget of Propeller Mound is probably accompanied by an unknown portion of sediments buffered from suspension by the corals. However, extended hiatuses in Propeller Mound sequences only allow the calculation of a net carbonate accumulation. Thus, net carbonate accumulation for the last 175 kyr accounts for only <0.3 g/cm2/kyr, which is even less than for the off-mound sediments. These data imply that Propeller Mound faces burial by hemipelagic sediments as has happened to numerous buried carbonate mounds found slightly to the north of the investigated area.