975 resultados para Barrie, Margaret Ogilvy.
Resumo:
Microbial cells, and ultimately the Earth's biosphere, function within a narrow range of physicochemical conditions. For the majority of ecosystems, productivity is cold-limited, and it is microbes that represent the failure point. This study was carried out to determine if naturally occurring solutes can extend the temperature windows for activity of microorganisms. We found that substances known to disorder cellular macromolecules (chaotropes) did expand microbial growth windows, fungi preferentially accumulated chaotropic metabolites at low temperature, and chemical activities of solutes determined microbial survival at extremes of temperature as well as pressure. This information can enhance the precision of models used to predict if extraterrestrial and other hostile environments are able to support life; furthermore, chaotropes may be used to extend the growth windows for key microbes, such as saprotrophs, in cold ecosystems and manmade biomes.
Resumo:
Objectives: The Secondary Prevention of Heart disEase in geneRal practicE (SPHERE) trial has recently reported. This study examines the cost-effectiveness of the SPHERE intervention in both healthcare systems on the island of Ireland. Methods: Incremental cost-effectiveness analysis. A probabilistic model was developed to combine within-trial and beyond-trial impacts of treatment to estimate the lifetime costs and benefits of two secondary prevention strategies: Intervention - tailored practice and patient care plans; and Control - standardized usual care. Results: The intervention strategy resulted in mean cost savings per patient of 512.77 (95 percent confidence interval [CI], 1086.46-91.98) and an increase in mean quality-adjusted life-years (QALYs) per patient of 0.0051 (95 percent CI, 0.0101-0.0200), when compared with the control strategy. The probability of the intervention being cost-effective was 94 percent if decision makers are willing to pay €45,000 per additional QALY. Conclusions: Decision makers in both settings must determine whether the level of evidence presented is sufficient to justify the adoption of the SPHERE intervention in clinical practice. Copyright © Cambridge University Press 2010.
Resumo:
Context. Considerable demand exists for electron excitation data for Ni ii, since lines from this abundant ion are observed in a wide variety of laboratory and astrophysical spectra. The accurate theoretical determination of these data can present a significant challenge however, due to complications arising from the presence of an open 3d-shell in the description of the target ion. Aims. In this work we present collision strengths and Maxwellian averaged effective collision strengths for the electron-impact ex- citation of Ni ii. Attention is concentrated on the 153 forbidden fine-structure transitions between the energetically lowest 18 levels of Ni ii. Effective collision strengths have been evaluated at 27 individual electron temperatures ranging from 30–100 000 K. To our knowledge this is the most extensive theoretical collisional study carried out on this ion to date.Methods. The parallel R-matrix package RMATRX II has recently been extended to allow for the inclusion of relativistic effects. This suite of codes has been utilised in the present work in conjunction with PSTGF to evaluate collision strengths and effective collision strengths for all of the low-lying forbidden fine-structure transitions. The following basis configurations were included in the target model – 3d9 , 3d8 4s, 3d8 4p, 3d7 4s2 and 3d7 4s4p – giving rise to a sophisticated 295 j j-level, 1930 coupled channel scattering problem. Results. Comprehensive comparisons are made between the present collisional data and those obtained from earlier theoretical evaluations. While the effective collision strengths agree well for some transitions, significant discrepancies exist for others.
Resumo:
Co-edited this issue of the journal