928 resultados para Adhesion of cells


Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Waddlia chondrophila (W. chondrophila) is an emerging abortifacient organism which has been identified in the placentae of humans and cattle. The organism is a member of the order Chlamydiales, and shares many similarities at the genome level and in growth studies with other well-characterised zoonotic chlamydial abortifacients, such as Chlamydia abortus (C. abortus). This study investigates the growth of the organism and its effects upon pro-inflammatory cytokine expression in a ruminant placental cell line which we have previously utilised in a model of C. abortus pathogenicity. METHODOLOGY/PRINCIPAL FINDINGS: Using qPCR, fluorescent immunocytochemistry and electron microscopy, we characterised the infection and growth of W. chondrophila within the ovine trophoblast AH-1 cell line. Inclusions were visible from 6 h post-infection (p.i.) and exponential growth of the organism could be observed over a 60 h time-course, with significant levels of host cell lysis being observed only after 36 h p.i. Expression of CXCL8, TNF-α, IL-1α and IL-1β were determined 24 h p.i. A statistically significant response in the expression of CXCL8, TNF-α and IL-1β could be observed following active infection with W. chondrophila. However a significant increase in IL-1β expression was also observed following the exposure of cells to UV-killed organisms, indicating the stimulation of multiple innate recognition pathways. CONCLUSIONS/SIGNIFICANCE: W. chondrophila infects and grows in the ruminant trophoblast AH-1 cell line exhibiting a complete chlamydial replicative cycle. Infection of the trophoblasts resulted in the expression of pro-inflammatory cytokines in a dose-dependent manner similar to that observed with C. abortus in previous studies, suggesting similarities in the pathogenesis of infection between the two organisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Digital holographic microscopy (DHM) allows optical-path-difference (OPD) measurements with nanometric accuracy. OPD induced by transparent cells depends on both the refractive index (RI) of cells and their morphology. This Letter presents a dual-wavelength DHM that allows us to separately measure both the RI and the cellular thickness by exploiting an enhanced dispersion of the perfusion medium achieved by the utilization of an extracellular dye. The two wavelengths are chosen in the vicinity of the absorption peak of the dye, where the absorption is accompanied by a significant variation of the RI as a function of the wavelength.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

SUMMARY : Detailed knowledge of the different components of the immune system is required for the development of new immunotherapeutic strategies. CD4 T lymphocytes represent a highly heterogeneous group of cells characterized by various profiles of cytokine production and effector vs. regulatory functions. They are central players in orchestrating adaptive immune responses: unbalances between the different subtypes can lead either to aggressive autoimmune disorders or can favour the uncontrolled growth of malignancies. In this study we focused on the characterization of human CD4 T cells in advanced stage melanoma patients as well as in patients affected by various forms of autoimmune inflammatory spondyloarthropathies. In melanoma patients we report that a population of FOXP3 CD4 T cells, known as regulatory T cells, is overrepresented in peripheral blood, and even more in tumor-infitrated lymph nodes as well as at tumor sites, as compared to healthy donors. In tumor-infiltrated lymph nodes, but not in normal lymph nodes or in peripheral blood, FOXP3 CD4 T cells feature a highly differentiated phenotype (CD45RA-CCR7+/-), which suggests for a recent encounter with their cognate antigen. FOXP3 CD4 T cells have been described to be an important component of the several known immune escape mechanisms. We demonstrated that FOXP3 CD4 T cells isolated from melanoma patients exert an in vitro suppressive action on autologous CD4 T cells, thus possibly inhibiting an efficient anti-tumor response. Next, we aimed to analyse CD4 T cells at antigen-specific level. In advanced stage melanoma patients, we identified for the first time, using pMHCII multimers, circulating CD4 T cells specific for the melanoma antigen Melan-A, presented by HLA-DQB1 *0602. Interestingly, in a cohort of melanoma patients enrolled in an immunotherapy trails consisting of injection of a Melan-A derived peptide, we did not observe signif cant variations in the ex vivo frequencies of Melan-A specific CD4 T cells, but important differences in the quality of the specific CD4 T cells. In fact, up to 50% of the ex vivo Melan-A/DQ6 specific CD4 T cells displayed a regulatory phenotype and were hypoproliferative before vaccination, while more effector, cytokine-secreting Melan-A/DQ6 specific CD4 T cells were observed after immunization. These observations suggest that peptide vaccination may favourably modify the balance between regulatory and effector tumor-specific CD4 T cells. Finally, we identified another subset of CD4 T cells as possible mediator of pathology in a group of human autoimmune spondyloarthropathies, namely Th17 cells. These cells were recently described to play a critical role in the pathogenesis of some marine models of autommunity. We document an elevated presence of circulating Th17 cells in two members of seronegative spondyloarthropathies, e.g. psoriatic arthritis and ankylosing spondylitis, while we do not observe increased frequencies of Th17 cells in peripheral blood of rheumatoid arthritic patients. In addition, Th17 cells with a more advanced differentiation state (CD45RA-CCR7-CD27-) and polyfunctionality (concomitant secretion of IL-17, IL-2 and TNFα) were observed exclusively in patients with seronegative spondylarthropathies. Together, our observations emphasize the importance of CD4 T cells in various diseases and suggest that immunotherapeutic approaches considering CD4 T cells as targets should be evaluated in the future.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new system was employed to study amplification of t,he DHF'R gene DFB,1 ) in Sa<,:;charoillYCB§. .Q~~Yi...S!i<;1~. . This system consists of a series of yeast strains containing a casset,te which encodes t he yeast, D..ERl gene ttghtly linked tjO a f usion of the yeast 1EU2. regulat,ory region wi tJ1 the LAQZ str ctural gene from E. cO.1-1 (,) . M. Clement , unpubl i,::;hed) . Th's casset;t e was shown t.o be integrat,ed int o a unj que chromosomal l ocati on in each strain . Yeast cells were se l ected for MTX-resistance and overproduction of ~ galac t osi d se ( B-gal ). Since the inserted DF'Rl and ~ACZ genes are independently regulated, it was thought that cel l s with this phenotype probably contain e d ampl if ications of the cassette. A lar ge variat ion in the f requn y o f MTX-resistance was found between the di ff e r ent str ains. These freqlen c ~ es r anged from about 2 x 10 - 7 fo r a population of cells containing the cassette integrated at, the BI J2.l gene in t,he middle of the long arm of chromosome V, to about 5 x 10-4 for a strain with the cassette i nserted in the r DNA cluster Abo It 85% of the MTX- res i stcmt iso l ates examined showed enhanced B·-gal act i v ity rel a t ive t o the parental strain . For the ma jorit y of strains, the mean B- gal activity in drug-r sistant clones was about 3 times that o f the parent following a single se l ect i on step . I n con t r ast, primary MTX-resistant derivat~ves of cells with the cassette inserted 3 at the rDNA cluster showed inc r eases in B- gal activity ranging from 9 - 14 f old r elative to the parent. Analysis of the latte r s train by Southe rn hybr idization indicated that the cassette was inde e d amplified several fold in MTX-re sistant derivatives. A sing l e strain, in which the cassette was inserted at the !lEA;], loc u.s , was used to examine in more detai 1 , the parameters affecting DFRl gene amplificat~ion in yeast . The mean B- gal activity in drug-resistant derivatives of this strain could be increased from 3 to 6 or 7 fold relative to the parent, by stepwise sel ection using increasing MTX concentrations. B-gal overproduction was found to be un stable in all primary and highly -resistant isolates examined. There was no indication, h owever, of a decrease i n growth r a t e in MTX-res i s tant cells which overproduced B - gal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The regenerating urodele limb is a useful model system in which to study, in vivo, the controls of cell proliferation and differentiation. Techniques are available which enable one to experimentally manipulate mitogenic influences upon the blastema, as well the morphogenesis of the regenerating 11mb. Although classical regeneration studies have generated a wealth of knowledge concerning tissue interactions, little 1s known about the process at the level of gene expression. The aim of this project was to clone potentially developmentally regulated genes from a newt genomic library for use in future studies of gene expression during limb regeneration. We decided to clone the cytoskeletal actin gene for the following reasons: 1. its expression reflects the proliferative and differentiatlve states of cells in other systems 2. the high copy number of cytoplasmic actin pseudogenes in other vertebrates and the high degree of evolutionary sequence conservation among actin genes increased the chance of cloning one of the newt cytoplasmic actin genes. 3. Preliminary experiments indicated that a newt actin could probably be identified using an available chick ~-actln gene for a molecular probe. Two independent recombinant phage clones, containing actin homologous inserts, were isolated from a newt genomic library by hybridization with the chick actin probe. Restriction mapping identified actin homologous sequences within the newt DNA inserts which were subcloned into the plasmid pTZ19R. The recombinant plasmids were transformed into the Escherichia coli strain, DHsa. Detailed restriction maps were produced of the 5.7Kb and 3.1Kb newt DNA inserts in the plasmids, designated pTNAl and pTNA2. The short «1.3 Kb) length of the actin homologous sequence in pTNA2 indicated that it was possibly a reverse transcript pseudogene. Problems associated with molecular cloning of DNA sequences from N. viridescens are discussed with respect to the large genome size and abundant highly repetitive DNA sequences.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Numerous investigations have demonstrated large increases in y-amino butyrate (GABA) levels in response to a variety of stresses such as touch or cold shock (Wallace et ale 1984) Circumstantial evidence indicating a role of Ca2 + in these increases includes elevated Ca2+ levels in response to touch and cold shock (Knight et ale 1991), and the demonstration of a calmodulin binding domain on glutamate decarboxylase (GAD), the enzyme responsible for GABA synthesis (Baum et al 1993) In the present study the possible role of Ca2+ and calmodulin in stimulation of GAD and subsequent GABA accumulation was examined using asparagus mesophyll cells. Images of cells loaded with the Ca2+ indicator Fluo-3 revealed a rapid and transient increase in cytosolic Ca2+ in response to cold shock. GABA levels increased by 106% within 15 min. of cold shock. This increase was inhibited 70% by the calmodulin antagonist W7, and 42% by the Ca2+ channel blocker La3+.. Artificial elevation of intracellular Ca2+ by the Ca2+ionophore A23187 resulted in an 61% increase in GABA levels. Stimulation of GABA synthesis by ABA resulted in an 83% increase in GABA levels which was inhibited 55% by W7. These results support the hypothesis that cold shock stimulates Ca2+ entry into the cytosol of the cells which results in Ca2+/calmodulin mediated activation of GAD and consequent GABA synthesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

GABA (y-amino butyric acid) is a non-protein amino acid synthesized through the a-decarboxylation of L-glutamate. This reaction is catalyzed by L-glutamate decarboxylase (EC 4.1.1.15), a cytosolic Ca2+/calmodulin-stimulated enzyme. The purpose of this study is to determine whether or not GABA accumulation is associated with the hypersensitive response of isolated Asparagus sprengeri mesophyll cells. The addition of 25 J.lM mastoparan, a G protein activator, to suspensions of isolated asparagus mesophyll cells significantly increased GABA synthesis and cell death. Cell death was assessed using Evan's blue dye and fluorescein diacetate tests for cell viability. In addition, mastoparan stimulated pH-dependent alkalinization of the external medium, and a rapid and large 02 consumption followed by a loss of photosynthetic activity. The rate of 02 consumption and the net decrease in 02 in the dark was enhanced by light. The inactive mastoparan analogue Mas17 was ineffective in stimulating GABA accumulation, medium alkalinization, 02 uptake and cell death. Accumulation of H202 in response tomastoparan was not detected, however, mastoparan caused the cell-dependent degradation of added H202. The pH dependence of mastoparan-stimulated alkalinization suggests cellular electrolyte leakage, while the consumption of 02 corresponds to the oxidative burst in which 02 at the cell surface is reduced to form various active oxygen species. The results are indicative of the "hypersensitive response" of plants to pathogen attack, namely, the death of cells in the locality of pathogen invasion. The data are compatible with a model in which mastoparan triggers G protein activity, subsequent intracellular signal transduction pathway/s, and the hypersensitive response. It is postulated that the physiological elicitation of the hypersensitive response involves G protein signal transduction. The synthesis of GABA during the hypersensitive response has not been documented previously; however the role/s of GABA synthesis in the hypersensitive response, if any, remain unclear.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As Ca2+ and phosphatidylserine (PS) are known to induce the adhesion of bilayer vesicles and form collapsed multibilayer structures in vitro, it was the aim of this study to examine how that interaction and the resultant structures might be modified by neutral lipid species. X-ray diffraction data from multilamellar systems suggest that phosphatidylcholine (PC) and diacylglycerol (DG) might be in the collapsed phase up to a concentration of -30 mole % and that above this concentration these neutral lipids may modify Ca2+-induced bilayer interactions. Using large unilamellar vesicles and long incubations in excess Ca2+ to ensure equilibration, similar preliminary results were again obtained with PC, and also with phosphatidylethanolamine (PE). A combination of X-ray diffraction, thin-layer chromatography, density gradient centrifugation and freeze-fracture electron microscopy, used in conjunction with an osmotic stress technique, showed that (i) -30 mole % PC can be accomodated in the Ca(DOPS)2 phase; and (ii) higher PC levels modify Ca2+-induced bilayer interactions resulting in single lamellar phases of larger dimension and reduced tendency for REV collapse. Importantly, the data suggest that PC is dehydrated during the rapid collapse process leading. to Ca(DOPS)2 formation and exists with this dehydrated phase. Similar results were obtained using PS isolated from bovine brain. Preliminary studies using two different phosphatidylethanolamine (PE) species indicated accomodation by Ca(DOPS)2 of -25-30 mole 0/0 PE and bulk phase separation, of species favouring a non-bilayer phase, at higher levels. Significantly, all PS/PE vesicles appear to undergo a complete Ca2+-induced collapse, even with contents of up to 90 mole % PE. These data suggest that PE may have an important role in fusion mechanisms in vivo. In sum the data lend both structural and stoichiometric evidence for th~ existence of laterally segregated neutral lipid molecules within the same bilayers as PS domains exposed to Ca2+.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect that plants {Typha latifolia) as well as root-bed medium physical and chemical characteristics have on the treatment of primary treated domestic wastewater within a vertical flow constructed wetland system was investigated. Five sets of cells, with two cells in each set, were used. Each cell was made of concrete and measured 1 .0 m X 1 .0 m and was 1.3 m deep. Four different root-bed media were tested : Queenston Shale, Fonthill Sand, Niagara Shale and a Michigan Sand. Four of the sets contained plants and a single type of root-bed medium. The influence of plants was tested by operating a Queenston Shale set without plants. Due to budget constraints no replicates were constructed. All of the sets were operated independently and identically for twenty-eight months. Twelve months of data are presented here, collected after 16 months of continuous operation. Root-bed medium type did not influence BOD5 removal. All of the sets consistently met Ontario Ministry of Environment (MOE) requirements (<25 mg/L) for BOD5 throughout the year. The 12 month average BOD5 concentration from all sets with plants was below 2.36 mg/L. All of the sets were within MOE discharge requirements (< 25 mg/L) for suspended solids with set effluent concentrations ranging from 1.53 to 14.80 mg/L. The Queenston Shale and Fonthill Sand media removed the most suspended solids while the Niagara Shale set produced suspended solids. The set containing Fonthill Sand was the only series to meet MOE discharge requirements (< Img/L) for total phosphorus year-round with a twelve month mean effluent concentration of 0.23 mg/L. Year-round all of the root-bed media were well below MOE discharge requirements (< 20mg/L in winter and < 10 mg/L in sumnner) for ammonium. The Queenston Shale and Fonthill Sand sets removed the most total nitrogen. Plants had no effect on total nitrogen removal, but did influence how nitrogen was cycled within the system. Plants increased the removal of suspended solids by 14%, BOD5 by 10% and total phosphorus by 22%. Plants also increased the amount of dissolved oxygen that entered the system. During the plant growing season removal of total phosphorus was better in all sets with plants regardless of media type. The sets containing Queenston Shale and Fonthill Sand media achieved the best results and plants in the Queenston Shale set increased treatment efficiency for every parameter except nitrogen. Vertical flow wetland sewage treatment systems can be designed and built to consistently meet MOE discharge requirements year-round for BOD5, suspended solids, total phosphorus and ammonium. This system Is generally superior to the free water systems and sub-surface horizontal flow systems in cold climate situations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the most important problems in the theory of cellular automata (CA) is determining the proportion of cells in a specific state after a given number of time iterations. We approach this problem using patterns in preimage sets - that is, the set of blocks which iterate to the desired output. This allows us to construct a response curve - a relationship between the proportion of cells in state 1 after niterations as a function of the initial proportion. We derive response curve formulae for many two-dimensional deterministic CA rules with L-neighbourhood. For all remaining rules, we find experimental response curves. We also use preimage sets to classify surjective rules. In the last part of the thesis, we consider a special class of one-dimensional probabilistic CA rules. We find response surface formula for these rules and experimental response surfaces for all remaining rules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Endonuclease G (EndoG) is a well conserved mitochondrial nuclease with dual lethal and vital roles in the cell. It non-specifically cleaves endogenous DNA following apoptosis induction, but is also active in non-apoptotic cells for mitochondrial DNA (mtDNA) replication and may also be important for replication, repair and recombination of genomic DNA. The aim of our study was to examine whether EndoG exerts similar activities on exogenous DNA substrates such as plasmid DNA (pDNA) and viral DNA vectors, considering their importance in gene therapy applications. The effects of EndoG knockdown on pDNA stability and levels of encoded reporter gene expression were evaluated in the cervical carcinoma HeLa cells. Transfection of pDNA vectors encoding short-hairpin RNAs (shRNAs) reduced levels of EndoG mRNA and nuclease activity in HeLa cells. In physiological circumstances, EndoG knockdown did not have an effect on the stability of pDNA or the levels of encoded transgene expression as measured over a four day time-course. However, when endogenous expression of EndoG was induced by an extrinsic stimulus (a cationic liposome transfection reagent), targeting of EndoG by shRNA improved the perceived stability and transgene expression of pDNA vectors. Therefore, EndoG is not a mediator of exogenous DNA clearance, but in non-physiological circumstances it may non-specifically cleave intracellular DNA regardless of its origin. To investigate possible effects of EndoG on viral DNA vectors, we constructed and evaluated AdsiEndoG, a first generation adenovirus (Ad5 ΔE1) vector encoding a shRNA directed against EndoG mRNA, along with appropriate Ad5 ΔE1 controls. Infection of HeLa cells with AdsiEndoG at a multiplicity of infection (MOI) of 10 p.f.u./cell resulted in an early cell proliferation defect, absent from cells infected at equivalent MOI with control Ad5 ΔE1 vectors. Replication of Ad5 ΔE1 DNA was detected for all vectors, but AdsiEndoG DNA accumulated to levels that were 50 fold higher than initially, four days after infection, compared to 14 fold for the next highest control Ad5 ΔE1 vector. Deregulation of the cell cycle by EndoG depletion, which is characterized by an accumulation of cells in the G2/M transition, is the most likely reason for the observed cell proliferation defect. The enhanced replication of AdsiEndoG is consistent with this conclusion, as Ad5 ΔE1 DNA replication is intimately related to cell cycling and prolongation or delay in G2/M greatly enhances this process. Furthermore, infection of HeLa with AdsiEndoG at MOI of 50 p.f.u./cell resulted in an almost complete disappearance of viable, adherent tumour cells from culture, whereas almost a third of the cells were still adherent after infection with control Ad5 ΔE1 vectors, relative to the non-infected control. Therefore, targeting of EndoG by RNAi is a viable strategy for improving the oncolytic properties of first generation adenovirus vectors. In addition, AdsiEndoG-mediated knockdown of EndoG reduced homologous recombination between pDNA substrates in HeLa cells. The effect was modest but, nevertheless demonstrated that the proposed role of EndoG in homologous recombination of cellular DNA also extends to exogenous DNA substrates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proteolytic processing of the CUX1 transcription factor generates an isoform, p110 that accelerates entry into S phase. To identify targets of p110 CUX1 that are involved in cell cycle progression, we performed genome-wide location analysis using a promoter microarray. Since there are no antibodies that specifically recognize p110, but not the full-length protein, we expressed physiological levels of a p110 isoform with two tags and purified chromatin by tandem affinity purification (ChAP). Conventional ChIP performed on synchronized populations of cells confirmed that p110 CUX1 is recruited to the promoter of cell cycle-related targets preferentially during S phase. Multiple approaches including silencing RNA (siRNA), transient infection with retroviral vectors, constitutive expression and reporter assays demonstrated that most cell cycle targets are activated whereas a few are repressed or not affected by p110 CUX1. Functional classes that were over-represented among targets included DNA replication initiation. Consistent with this finding, constitutive expression of p110 CUX1 led to a premature and more robust induction of replication genes during cell cycle progression, and stimulated the long-term replication of a plasmid bearing the oriP replicator of Epstein Barr virus (EBV).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cette thèse rapporte l’étude des propriétés physicochimiques des nanoparticles polymériques et leur impact sur l’interaction avec les cellules vivantes. Nous nous sommes tout spécialement attachés à étudier l’effet des propriétés adhésives et mécaniques des nanoparticules sur leur capacité de pénétration de la membrane cellulaire. Pour ce faire, nous avons tout d’abord utilisé des nanoparticules d’acide polylactique (PLA) fonctionnalisées en surface avec un ligand des sélectines E et P. Le greffage du ligand sur la particule s’est fait par une nouvelle méthode expérimentale garantissant la présence du ligand à la surface de la particule durant toute sa durée de vie. Cette méthode consiste à mélanger un polymère fonctionnalisé avec le ligand avec un autre polymère non fonctionnalisé. La présence du ligand à la surface des nanoparticules formées à partir de ce mélange de polymères a été confirmée par analyse ToF SIMS. Nous avons pu prouver que les particules possédant le ligand greffé à leur surface démontraient une capacité adhésive supérieure à leurs homologues non fonctionnalisés sur des cellules endothéliales HUVEC activées par différentes drogues. De plus, le captage des particules par les cellules HUVEC est modulé par le niveau d’expression des récepteurs selectine E et P et aussi par la quantité de ligand libre. Ces résultats montrent clairement que le greffage du ligand confère aux particules des propriétés adhésives accrues et spécifiques ce qui permet leur usage postérieure comme vecteur pharmaceutique capable de cibler un récepteur particulier à la surface d’une cellule. Nous avons aussi démontré que l’interaction entre les nanoparticules et la membrane cellulaire peut aussi être contrôlée aussi bien par les propriétés mécaniques de la cellule que de la nanoparticule. Dans une première étape, nous avons mesuré à l’aide de l’appareil de forces de surface l’élasticité de cellules macrophagiques déposées sur différents substrats. En contrôlant l’interaction entre la cellule et le substrat sur lequel elle repose nous avons montré qu’il était possible de modifier à ii volonté les propriétés mécaniques cellulaire. Une augmentation de l’élasticité cellulaire s’accompagne d’une augmentation systématique de l’internalisation de nanoparticules de PLA non fonctionnalisées. Ceci suggère un rôle prépondérant des propriétés mécaniques du cortex cellulaire dans le captage des nanoparticules de PLA. Dans une seconde étape, nous avons étudié l’effet des propriétés mécaniques des nanoparticules sur leur capacité de pénétration cellulaire. Pour ce faire, nous avons synthétisé des particules d’hydrogel dont l’élasticité était contrôlée par le degré d’agent réticulant inclus dans leur formulation. Le contrôle des propriétés mécaniques des nanoparticules a été confirmé par la mesure du module de Young des particules par microscopie de force atomique. L’impact des propriétés mécaniques de ces particules sur leur capacité de pénétration dans les cellules vivantes a été étudié sur des cellules macrophagiques de souris. Les résultats ont montré que la cinétique d’internalisation, la quantité de particules internalisées et le mécanisme d’internalisation dépendent tous du module de Young des nanoparticules. Aucune différence dans le trajet intracellulaire des particules n’a pu être observée malgré le fait que différentes voies d’internalisation aient été observées. Ce dernier résultat peut s’expliquer par le fait que les nanoparticules sont internalisées par plusieurs voie simultanément ce qui facilite leur accumulation dans les organelles digestives intracellulaires. Un modèle simple permettant d’expliquer ces résultats a été proposé et discuté.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Haemophilus parasuis est un pathogène porcin causant la maladie de Glässer caractérisée par de la polysérosite fibrineuse, polyarthrite, méningite et septicémie. La pathogenèse de l’infection et les facteurs de virulence sont encore mal connus. Le site de colonisation de Haemophilus parasuis dans le tractus respiratoire supérieur est controversé. Pour accéder à la circulation sanguine, H. parasuis doit envahir la muqueuse. H. parasuis adhère à des cellules épithéliales porcines de trachée (NPTr). Pour accéder au système nerveux central et causer la méningite, H. parasuis doit traverser la barrière hémato-méningée. H. parasuis adhère à et envahit des cellules endothéliales porcines de microvaisseaux cérébraux (PBMEC) provenant de la BBB. Le but de cette étude était d’étudier certaines interactions entre H. parasuis et son lipooligosccharide (LOS), et des cellules endothéliales et épithéliales porcines. Les résultats démontrent que l’adhésion de H. parasuis Nagasaki aux NPTr et aux PBMEC est en partie médiée par son LOS. H. parasuis induit l’apoptose des NPTr et des PBMEC, mais le LOS ne semble pas impliqué. H. parasuis, et à un niveau moindre son LOS, stimulent la sécrétion d’interleukine- (IL) 6 et d’IL-8. Différentes souches de H. parasuis sérotypes 4 et 5 (sérotypes les plus prévalents en Amérique du Nord) stimulent également les NPTr et PBMEC à produire IL-6 et IL-8. Les résultats suggèrent que le LOS de H. parasuis joue un certain rôle dans la pathogenèse de l’infection, mais d’autres composantes bactériennes sont également impliquées.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ARF6 et ARF1 sont des petites GTPases de la famille des ARF(s) qui régulent plusieurs voies de signalisation comprenant, la formation et le mouvement des vésicules, la transformation des lipides membranaires et la réorganisation du cytosquelette d’actine. À ce jour, le rôle de la protéine ARF6 et de la protéine ARF1 dans la signalisation des récepteurs couplés aux protéines G (RCPG) et des récepteurs à activité tyrosine kinase (RTK) dans les cellules endothéliales est encore très peu étudié. Le but de cette étude a été de caractériser le rôle de la protéine ARF6 dans la migration des cellules endothéliales induite par l’endothéline-1, ainsi que le rôle de la protéine ARF1 dans la sécrétion du monoxyde d’azote (NO) stimulées par le VEGF. Dans cette étude, nous montrons qu’ARF6 est essentielle à la migration des cellules endothéliales induite par l’endotheline-1. L’inhibition de l’expression d’ARF6 par interférence à l’ARN entraîne une activation marquée de la kinase FAK et son association constitutive avec Src. Par ailleurs, cette inhibition affecte l’association entre GIT1 et la kinase FAK. Ceci se traduit par une inhibition du désassemblage des contacts focaux et une augmentation de l’adhésion cellulaire menant à une diminution de la motilité. De plus, nos résultats montrent que la protéine ARF1 est essentielle à l’activation d’eNOS et à la sécrétion du NO suite à l’activation du VEGFR2 dans les cellules endothéliales BAEC. En effet, l’inhibition de l’expression d’ARF1 par interférence à l’ARN entraîne une inhibition du recrutement de la kinase Akt à la membrane plasmique et une inhibition de son activation induite par le VEGF. L’inhibition de l’activation de la kinase Akt par le VEGF conduit à une inhibition de l’activation de eNOS et de la sécrétion du NO. Dans l’ensemble, nos résultats montrent que les protéines ARF6 et ARF1 sont essentielles à la signalisation de l’ETB et du VEGFR2 pour les processus menant à la migration cellulaire et à la sécrétion du NO respectivement, deux évènements essentiels à l’angiogenèse.