Integrins on the move


Autoria(s): Arjonen, Antti
Data(s)

03/06/2013

03/06/2013

14/06/2013

Resumo

Cancer is a leading cause of death worldwide accounting for 13% of all deaths in 2005. The spread of cancer and formation of metastases is the major cause of mortality among cancer patients. The spread of cancer is based on the cancer cell’s ability to break away from the surrounding tissue and to migrate into new areas in the body. The ability of cells to bind its surroundings and to move is controlled by the mechanical cell surface adhesion receptors called the integrins. Integrins have a critical role in cell adhesion, cell motility and tissue homeostasis. By communicating with ECM, integrins transmit signals from the surrounding environment inside the cell and modulate the function of many important signalling pathways involved in cell survival, development, gene expression, proliferation, motility and cytoskeletal organization. During cell migration integrin-matrix adhesions are formed in front of the cell while rear-adhesions are released during migration. Integrins are endocytosed from the plasma-membrane into the cytoplasm and partly recycled back to new adhesion sites in a process called integrin trafficking. Also, the cell cytoskeleton and protrusions are important in cell migration. Finger-like actin protrusions called filopodia display an interesting cancer relevant cooperation with integrins that is required for cell migration. The expression and function of integrins changes markedly as cells acquire carcinogenic properties. Changed integrin function is partly responsible for detachment of tumor cells from neighbouring cells and for providing enhanced invasive capabilities for tumor cells to disseminate. Similarly, the formation of filopodia is increased in cancer. High myosin-10 expression is related to poor outcome in breast cancer and increased cell migration. The proper function of myosin-10 induced filopodia needs association with β1 integrins. The importance of integrin trafficking and filopodia formation is becoming increasingly more recognized in cancer. This thesis focusses on the role of integrins, integrin trafficking and myosin-10 induced filopodia cancer cell migration.

Identificador

http://www.doria.fi/handle/10024/90668

URN:ISBN:978-951-29-5444-5

Idioma(s)

en

Publicador

Annales Universitatis Turkuensis D 1080

Tipo

Doctoral thesis (article-based)