934 resultados para Acute Nonlymphocytic Leukemia
Resumo:
Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury. It is a response to various diseases of variable etiology, including SARS-CoV infection. To date, a comprehensive study of the genomic physiopathology of ARDS (and SARS) is lacking, primarily due to the difficulty of finding suitable materials to study the disease process at a tissue level (instead of blood, sputa or swaps). Hereby we attempt to provide such study by analyzing autopsy lung samples from patient who died of SARS and showed different degrees of severity of the pulmonary involvement. We performed real-time quantitative PCR analysis of 107 genes with functional roles in inflammation, coagulation, fibrosis and apoptosis: some key genes were confirmed at a protein expression level by immunohistochemistry and correlated to the degree of morphological severity present in the individual samples analyzed. Significant expression levels were identified for ANPEP (a receptor for CoV), as well as inhibition of the STAT1 pathway, IFNs production and CXCL10 (a T-cell recruiter). Other genes unassociated to date with ARDS/SARS include C1Qb, C5R1, CASP3, CASP9, CD14, CD68, FGF7, HLA-DRA, ICF1, IRF3, MALAT-1, MSR1, NFIL3, SLPI, USP33, CLC, GBP1 and TACI. As a result, we proposed to therapeutically target some of these genes with compounds such as ANPEP inhibitors, SLPI and dexamethasone. Ultimately, this study may serve as a model for future, tissue-based analyses of fibroinflammatory conditions affecting the lung. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to validate the application of a commercially available multiplex reverse transcription polymerase chain reaction (RT-PCR) assay [He-mavision-7 System] for the seven most common leukemia translocations for routine molecular diagnostic hematopathology practice. A total of 98 samples, comprising four groups, were evaluated: Group 1, 16 diagnostic samples molecularly positive by our existing laboratory-developed assays for PML-RARalpha/t (15; 17) or BCR-ABL/t (9;22); Group 2, 51 diagnostic samples negative by our laboratory-developed assays for PML-RARalpha/t (15;17) or BCR-ABL/t (9;22); Group 3, 21 prospectively analyzed diagnostic cases, without prior molecular studies; and Group 4, 10 minimal residual disease (MRD) samples. Analysis of the two previously studied cohorts (Groups 1 and 2) confirmed the diagnostic sensitivity and specificity of the multiplex assay with regard to these two translocations. Additionally, however, in the
Resumo:
Gene expression profiling has the potential to enhance current methods for the diagnosis of haematological malignancies. Here, we present data on 204 analyses from an international standardization programme that was conducted in 11 laboratories as a prephase to the Microarray Innovations in LEukemia (MILE) study. Each laboratory prepared two cell line samples, together with three replicate leukaemia patient lysates in two distinct stages: (i) a 5-d course of protocol training, and (ii) independent proficiency testing. Unsupervised, supervised, and r(2) correlation analyses demonstrated that microarray analysis can be performed with remarkably high intra-laboratory reproducibility and with comparable quality and reliability.
Resumo:
Background: Multiple studies have identified single variables or composite scores that help risk stratify patients at the time of acute lung injury (ALI) diagnosis. However, few studies have addressed the important question of how changes in pulmonary physiologic variables might predict mortality in patients during the subacute or chronic phases of ALI. We studied pulmonary physiologic variables, including respiratory system compliance, P/F ratio and oxygenation index, in a cohort of patients with ALI who survived more than 6 days of mechanical ventilation to see if changes in these variables were predictive of death and whether they are informative about the pathophysiology of subacute ALI.
Resumo:
Background: Non-invasive diagnosis of acute myocardial infarction (AMI) associated with significant left main stem (LMS) stenosis remains challenging.
Methods: Consecutive patients presenting with acute ischaemic-type chest pain from 2000 to 2010 were analysed. Entry criteria: 12-lead ECG and Body Surface Potential Map (BSPM) at presentation, cardiac troponin T (cTnT) =12?h and coronary angiography during admission. cTnT =0.03?µg/l defined AMI. ECG abnormalities assessed: STEMI by Minnesota criteria; ST elevation (STE) aVR =0.5?mm; ST depression (STD) =0.5?mm in =2 contiguous leads (CL); T-wave inversion (TWI) =1?mm in =2 CL. BSPM STE was =2?mm in anterior, =1?mm in lateral, inferior, right ventricular or high right anterior and =0.5?mm in posterior territories. Significant LMS stenosis was =70%.
Results: Enrolled were 2810 patients (aged 60?±?12 years; 71% male). Of these, 116 (4.1%) had significant LMS stenosis with AMI occurring in 92 (79%). STEMI by Minnesota criteria occurred in 13 (11%) (sensitivity 12%, specificity 92%), STE in lead aVR in 23 (20%) (sensitivity 23%, specificity 92%), TWI in 38 (33%) (sensitivity 34%, specificity 71%) and STD in 51 (44%) (sensitivity 49%, specificity 75%). BSPM STE occurred in 85 (73%): sensitivity 88%, specificity 83%, positive predictive value 95% and negative predictive value 65%. Of those with AMI, 74% had STE in either the high right anterior or right ventricular territories not identified by the 12-lead ECG. C-Statistic for AMI diagnosis using BSPM STE was 0.800 (P?<?0.001).
Conclusion: In patients with significant LMS stenosis presenting with chest pain, BSPM STE has improved sensitivity (88%), with specificity 83%, over 12-lead ECG in the diagnosis of AMI.