933 resultados para Active Geothermal Systems
Resumo:
With rising environmental alarm, the reduction of critical aircraft emissions including carbon dioxides (CO2) and nitrogen oxides (NOx) is one of most important aeronautical problems. There can be many possible attempts to solve such problem by designing new wing/aircraft shape, new efficient engine, etc. The paper rather provides a set of acceptable flight plans as a first step besides replacing current aircrafts. The paper investigates a green aircraft design optimisation in terms of aircraft range, mission fuel weight (CO2) and NOx using advanced Evolutionary Algorithms coupled to flight optimisation system software. Two multi-objective design optimisations are conducted to find the best set of flight plans for current aircrafts considering discretised altitude and Mach numbers without designing aircraft shape and engine types. The objectives of first optimisation are to maximise range of aircraft while minimising NOx with constant mission fuel weight. The second optimisation considers minimisation of mission fuel weight and NOx with fixed aircraft range. Numerical results show that the method is able to capture a set of useful trade-offs that reduce NOx and CO2 (minimum mission fuel weight).
Resumo:
This paper presents the results of a pilot study examining the factors that impact most on the effective implementation of, and improvement to, Quality Mangement Sytems (QMSs) amongst Indonesian construction companies. Nine critical factors were identified from an extensive literature review, and a survey was conducted of 23 respondents from three specific groups (Quality Managers, Project Managers, and Site Engineers) undertaking work in the Indonesian infrastructure construction sector. The data has been analyzed initially using simple descriptive techniques. This study reveals that different groups within the sector have different opinions of the factors regardless of the degree of importance of each factor. However, the evaluation of construction project success and the incentive schemes for high performance staff, are the two factors that were considered very important by most of the respondents in all three groups. In terms of their assessment of tools for measuring contractor’s performance, additional QMS guidelines, techniques related to QMS practice provided by the Government, and benchmarking, a clear majority in each group regarded their usefulness as ‘of some importance’.
Resumo:
Thin bed technology for clay/ concrete masonry is gaining popularity in many parts of the developed economy in recent times through active engagement of the industry with the academia. One of the main drivers for the development of thin bed technology is the progressive contraction of the professional brick and block laying workforce as the younger generation is not attracted towards this profession due to the general perception of the society towards manual work as being outdated in the modern digital economy. This situation has led to soaring cost of skilled labour associated with the general delay in completion of construction activities in recent times. In parallel, the advent of manufacturing technologies in producing bricks and blocks with adherence to specified dimensions and shapes and several rapid setting binders are other factors that have contributed to the development of thin bed technology. Although this technology is still emerging, especially for applications to earthquake prone regions, field applications are reported in Germany for over a few decades and in Italy since early 2000. The Australian concrete masonry industry has recently taken keen interest in pursuing research with a view to developing this technology. This paper presents the background information including review of literature and pilot studies that have been carried out to enable planning of the development of thin bed technology. The paper concludes with recommendations for future research.
Resumo:
Objective The Active Australia Survey (AAS) is used for physical activity (PA) surveillance in the general Australian adult population, but its validity in older adults has not been evaluated. Our aim was to examine the convergent validity of the AAS questions in older adults. Design The AAS was validated against pedometer step counts as an objective measure of PA, self-reported physical function, and a step-test to assess cardiorespiratory fitness. Method Participants were community-dwelling adults, aged 65-89 y, with the ability to walk 100 m. They completed a self-administered AAS and the step-test in one interview. One week earlier, they completed the Short Form-36 physical function subscale. Between these two interviews, they each wore a YAMAX Digiwalker SW200 pedometer and recorded daily steps. Using the AAS data, daily walking minutes and total PA minutes (walking, moderate-intensity PA and vigorous-intensity PA) were compared with the validity measures using Spearman rank-order correlations. Fifty-three adults completed the study. Results Median daily walking minutes were 34.2 (interquartile range [IQR] 17.1, 60.0), and median daily total PA minutes were 68.6 (IQR 31.4, 113.6). Walking and total PA minutes were both moderately correlated with pedometer steps (Spearman correlation r=0.42, p=0.003, for each) but not with step-test seconds to completion (r=-0.11, p=0.44; r=-0.25, p=0.08, respectively). Total PA minutes were significantly correlated with physical function scores (r=0.39, p=0.004), but walking minutes were not (r=0.15, p=0.29). Conclusions This initial examination of the psychometric properties of the AAS for older adults suggests that this surveillance tool has acceptable convergent validity for ambulatory, community-dwelling older adults.
Resumo:
In recent years several scientific Workflow Management Systems (WfMSs) have been developed with the aim to automate large scale scientific experiments. As yet, many offerings have been developed, but none of them has been promoted as an accepted standard. In this paper we propose a pattern-based evaluation of three among the most widely used scientific WfMSs: Kepler, Taverna and Triana. The aim is to compare them with traditional business WfMSs, emphasizing the strengths and deficiencies of both systems. Moreover, a set of new patterns is defined from the analysis of the three considered systems.
Resumo:
This paper presents a systems-level approach for adjudicating the prioritization, selection, and planning of inservcie professional development (PD) for teachers. We present a step-by-step model for documenting and assessing system-wide 'bids' for professional development programs
Resumo:
Operations management is an area concerned with the production of goods and services ensuring that business operations are efficient in utilizing resource and effective to meet customer requirements. It deals with the design and management of products, processes, services and supply chains and considers the acquisition, development, and effective and efficient utilization of resources. Unlike other engineering subjects, content of these units could be very wide and vast. It is therefore necessary to cover the content that is most related to the contemporary industries. It is also necessary to understand what engineering management skills are critical for engineers working in the contemporary organisations. Most of the operations management books contain traditional Operations Management techniques. For example ‘inventory management’ is an important topic in operations management. All OM books deal with effective method of inventory management. However, new trend in OM is Just in time (JIT) delivery or minimization of inventory. It is therefore important to decide whether to emphasise on keeping inventory (as suggested by most books) or minimization of inventory. Similarly, for OM decisions like forecasting, optimization and linear programming most organisations now a day’s use software. Now it is important for us to determine whether some of these software need to be introduced in tutorial/ lab classes. If so, what software? It is established in the Teaching and Learning literature that there must be a strong alignment between unit objectives, assessment and learning activities to engage students in learning. Literature also established that engaging students is vital for learning. However, engineering units (more specifically Operations management) is quite different from other majors. Only alignment between objectives, assessment and learning activities cannot guarantee student engagement. Unit content must be practical oriented and skills to be developed should be those demanded by the industry. Present active learning research, using a multi-method research approach, redesigned the operations management content based on latest developments in Engineering Management area and the necessity of Australian industries. The redesigned unit has significantly helped better student engagement and better learning. It was found that students are engaged in the learning if they find the contents are helpful in developing skills that are necessary in their practical life.
Resumo:
-
Resumo:
Harmful Algal Blooms (HABs) have become an important environmental concern along the western coast of the United States. Toxic and noxious blooms adversely impact the economies of coastal communities in the region, pose risks to human health, and cause mortality events that have resulted in the deaths of thousands of fish, marine mammals and seabirds. One goal of field-based research efforts on this topic is the development of predictive models of HABs that would enable rapid response, mitigation and ultimately prevention of these events. In turn, these objectives are predicated on understanding the environmental conditions that stimulate these transient phenomena. An embedded sensor network (Fig. 1), under development in the San Pedro Shelf region off the Southern California coast, is providing tools for acquiring chemical, physical and biological data at high temporal and spatial resolution to help document the emergence and persistence of HAB events, supporting the design and testing of predictive models, and providing contextual information for experimental studies designed to reveal the environmental conditions promoting HABs. The sensor platforms contained within this network include pier-based sensor arrays, ocean moorings, HF radar stations, along with mobile sensor nodes in the form of surface and subsurface autonomous vehicles. FreewaveTM radio modems facilitate network communication and form a minimally-intrusive, wireless communication infrastructure throughout the Southern California coastal region, allowing rapid and cost-effective data transfer. An emerging focus of this project is the incorporation of a predictive ocean model that assimilates near-real time, in situ data from deployed Autonomous Underwater Vehicles (AUVs). The model then assimilates the data to increase the skill of both nowcasts and forecasts, thus providing insight into bloom initiation as well as the movement of blooms or other oceanic features of interest (e.g., thermoclines, fronts, river discharge, etc.). From these predictions, deployed mobile sensors can be tasked to track a designated feature. This focus has led to the creation of a technology chain in which algorithms are being implemented for the innovative trajectory design for AUVs. Such intelligent mission planning is required to maneuver a vehicle to precise depths and locations that are the sites of active blooms, or physical/chemical features that might be sources of bloom initiation or persistence. The embedded network yields high-resolution, temporal and spatial measurements of pertinent environmental parameters and resulting biology (see Fig. 1). Supplementing this with ocean current information and remotely sensed imagery and meteorological data, we obtain a comprehensive foundation for developing a fundamental understanding of HAB events. This then directs labor- intensive and costly sampling efforts and analyses. Additionally, we provide coastal municipalities, managers and state agencies with detailed information to aid their efforts in providing responsible environmental stewardship of their coastal waters.
Resumo:
Autonomous underwater vehicles (AUVs) are increasingly used, both in military and civilian applications. These vehicles are limited mainly by the intelligence we give them and the life of their batteries. Research is active to extend vehicle autonomy in both aspects. Our intent is to give the vehicle the ability to adapt its behavior under different mission scenarios (emergency maneuvers versus long duration monitoring). This involves a search for optimal trajectories minimizing time, energy or a combination of both. Despite some success stories in AUV control, optimal control is still a very underdeveloped area. Adaptive control research has contributed to cost minimization problems, but vehicle design has been the driving force for advancement in optimal control research. We look to advance the development of optimal control theory by expanding the motions along which AUVs travel. Traditionally, AUVs have taken the role of performing the long data gathering mission in the open ocean with little to no interaction with their surroundings, MacIver et al. (2004). The AUV is used to find the shipwreck, and the remotely operated vehicle (ROV) handles the exploration up close. AUV mission profiles of this sort are best suited through the use of a torpedo shaped AUV, Bertram and Alvarez (2006), since straight lines and minimal (0 deg - 30 deg) angular displacements are all that are necessary to perform the transects and grid lines for these applications. However, the torpedo shape AUV lacks the ability to perform low-speed maneuvers in cluttered environments, such as autonomous exploration close to the seabed and around obstacles, MacIver et al. (2004). Thus, we consider an agile vehicle capable of movement in six degrees of freedom without any preference of direction.
Resumo:
Recommender systems are widely used online to help users find other products, items etc that they may be interested in based on what is known about that user in their profile. Often however user profiles may be short on information and thus it is difficult for a recommender system to make quality recommendations. This problem is known as the cold-start problem. Here we investigate using association rules as a source of information to expand a user profile and thus avoid this problem. Our experiments show that it is possible to use association rules to noticeably improve the performance of a recommender system under the cold-start situation. Furthermore, we also show that the improvement in performance obtained can be achieved while using non-redundant rule sets. This shows that non-redundant rules do not cause a loss of information and are just as informative as a set of association rules that contain redundancy.
Resumo:
Operators of busy contemporary airports have to balance tensions between the timely flow of passengers, flight operations, the conduct of commercial business activities and the effective application of security processes. In addition to specific onsite issues airport operators liaise with a range of organisations which set and enforce aviation-related policies and regulations as well as border security agencies responsible for customs, quarantine and immigration, in addition to first response security services. The challenging demands of coordinating and planning in such complex socio-technical contexts place considerable pressure on airport management to facilitate coordination of what are often conflicting goals and expectations among groups that have standing in respect to safe and secure air travel. What are, as yet, significantly unexplored issues in large airports are options for the optimal coordination of efforts from the range of public and private sector participants active in airport security and crisis management. A further aspect of this issue is how airport management systems operate when there is a transition from business-as-usual into an emergency/crisis situation and then, on recovery, back to ‘normal’ functioning. Business Continuity Planning (BCP), incorporating sub-plans for emergency response, continuation of output and recovery of degraded operating capacity, would fit such a context. The implementation of BCP practices in such a significant high security setting offers considerable potential benefit yet entails considerable challenges. This paper presents early results of a 4 year nationally funded industry-based research project examining the merger of Business Continuity Planning and Transport Security Planning as a means of generating capability for improved security and reliability and, ultimately, enhanced resilience in major airports. The project is part of a larger research program on the Design of Secure Airports that includes most of the gazetted ‘first response’ international airports in Australia, key Aviation industry groups and all aviation-related border and security regulators as collaborative partners. The paper examines a number of initial themes in the research, including: ? Approaches to integrating Business Continuity & Aviation Security Planning within airport operations; ? Assessment of gaps in management protocols and operational capacities for identifying and responding to crises within and across critical aviation infrastructure; ? Identification of convergent and divergent approaches to crisis management used across Austral-Asia and their alignment to planned and possible infrastructure evolution.
Resumo:
“What did you think you were doing?” Was the question posed by the conference organizers to me as the inventor and constructor of the first working Tangible Interfaces over 40 years ago. I think the question was intended to encourage me to talk about the underlying ideas and intentionality rather than describe an endless sequence of electronic bricks and that is what I shall do in this presentation. In the sixties the prevalent idea for a graphics interface was an analogue with sketching which was to somehow be understood by the computer as three dimensional form. I rebelled against this notion for reasons which I will explain in the presentation and instead came up with tangible physical three dimensional intelligent objects. I called these first prototypes “Intelligent Physical Modelling Systems” which is a really dumb name for an obvious concept. I am eternally grateful to Hiroshi Ishii for coining the term “Tangible User Interfaces” - the same idea but with a much smarter name. Another motivator was user involvement in the design process, and that led to the Generator (1979) project with Cedric Price for the world’s first intelligent building capable of organizing itself in response to the appetites of the users. The working model of that project is in MoMA. And the same motivation led to a self builders design kit (1980) for Walter Segal which facilitated self-builders to design their own houses. And indeed as the organizer’s question implied, the motivation and intentionality of these projects developed over the years in step with advancing technology. The speaker will attempt to articulate these changes with medical, psychological and educational examples. Much of this later work indeed stemming from the Media Lab where we are talking. Related topics such as “tangible thinking” and “intelligent teacups” will be introduced and the presentation will end with some speculations for the future. The presentation will be given against a background of images of early prototypes many of which have never been previously published.
Resumo:
Generative systems are now being proposed for addressing major ecological problems. The Complex Urban Systems Project (CUSP) founded in 2008 at the Queensland University of Technology, emphasises the ecological significance of the generative global networking of urban environments. It argues that the natural planetary systems for balancing global ecology are no longer able to respond sufficiently rapidly to the ecological damage caused by humankind and by dense urban conurbations in particular as evidenced by impacts such as climate change. The proposal of this research project is to provide a high speed generative nervous system for the planet by connecting major cities globally to interact directly with natural ecosystems to engender rapid ecological response. This would be achieved by active interactions of the global urban network with the natural ecosystem in the ecological principle of entropy. The key goal is to achieve ecologically positive cities by activating self-organising cities capable of full integration into natural eco-systems and to netowork the cities globally to provide the planet with a nervous system.
Resumo:
This paper argues a model of adaptive design for sustainable architecture within a framework of entropy evolution. The spectrum of sustainable architecture consists of efficient use of energy and material resource in the life-cycle of buildings, active involvement of the occupants into micro-climate control within the building, and the natural environment as the physical context. The interactions amongst all the parameters compose a complex system of sustainable architecture design, of which the conventional linear and fragmented design technologies are insufficient to indicate holistic and ongoing environmental performance. The latest interpretation of the Second Law of Thermodynamics states a microscopic formulation of an entropy evolution of complex open systems. It provides a design framework for an adaptive system evolves for the optimization in open systems, this adaptive system evolves for the optimization of building environmental performance. The paper concludes that adaptive modelling in entropy evolution is a design alternative for sustainable architecture.