999 resultados para Accumulation rate, < 6 µm
Resumo:
We analyzed sediment from Ocean Drilling Program (ODP) Site 1144 in the northern South China Sea to examine the weathering response of SE Asia to the strengthening of the East Asian Monsoon (EAM) since 14 ka. Our high-resolution record highlights the decoupling between continental chemical weathering, physical erosion and summer monsoon intensity. Mass accumulation rates, Ti/Ca, K/Rb, hematite/goethite and 87Sr/86Sr show sharp excursions from 11 to 8 ka, peaking at 10 ka. Clay minerals show a shorter-lived response with a higher kaolinite/(illite + chlorite) ratio at 10.7-9.5 ka. However, not all proxies show a clear response to environmental changes. Magnetic susceptibility rises sharply between 12 and 11 ka. Grain-size becomes finer from 14 to 10 ka and then coarsens until ~7 ka, but is probably controlled by bottom current flow and sealevel. Sr and Nd isotopes show that material is dominantly eroded from Taiwan with a lesser flux from Luzon, while clay mineralogy suggests that the primary sources during the Early Holocene were reworked via the shelf in the Taiwan Strait, rather than directly from Taiwan. Erosion was enhanced during monsoon strengthening and caused reworking of chemically weathered Pleistocene sediment largely from the now flooded Taiwan Strait, which was transgressed by ~8 ka, cutting off supply to the deep-water slope. None of the proxies shows an erosional response lasting until ~6 ka, when speleothem oxygen isotope records indicate the start of monsoon weakening. Although more weathered sediments were deposited from 11 to 8 ka when the monsoon was strong these are reworked and represent more weathering during the last glacial maximum (LGM) when the summer monsoon was weaker but the shelves were exposed.
Resumo:
Four long sediment cores from locations in the Framstrait, the Norwegian-Greenland Seas and the northern North Atlantic were analysed in a high resolution sampling mode (1 - 2 cm density) for their benthic foraminiferal content. In particular the impact of the intense climatic changes at glacial/interglacial transitions (terminations I and II) on the benthic community have been of special interest. The faunal data were investigated by means of multivariate analysis and represented in their chronological occurence. The most prominent species of benthic foraminifera in the Norwegian-Greenland Seas are Oridorsalis umbonatus, Cibicidoides wuellerstorfi, the group of Cassidulina, Pyrgo rotalaria, Globocassidulina subglobosa and fragmented tubes of arenaceous species. The climatic signal of termination I as well as termination II is recorded in the fossil foraminiferal tests as divided transition from glacial to interglacial. The elder INDAR maximum (individuals accumulation rate = individuals/sq cm * 1.000 y; Norwegian-Greenland Seas: average 3.000 - 6.000 individuals/sq cm * 1.000 y; northern North Atlantic: average 150 individuals/sq cm * 1.000 y) is followed by a period of decreased values. The second, younger maximum reaches comparable values as the elder maximum. The interglacial INDAR are in average 700 individuals/sq cm * 1.000 y in the Norwegian-Greenland Seas and 200 individuals/sq cm * 1.000 y in average in the northern North Atlantic. The occurence of the elder INDAR maximum shows a distinct chronological transgressivity between the northern North Atlantic (12.400 ybp.) and the Framstrait (8.900 ybp.). The time shift from south to north amounts 3.500 yrs., the average expanding velocity 0,78 km per year. Within the Norwegian-Greenland Seas the average expanding velocity amounts 0,48 km per year. This chronological transgressivity is interpreted as impact of the progressive expanding of the North Atlantic and the Norwegian Current during the deglaciation. The dynamic of the faunal development is defined as increasing INDAR per time. The elder INDAR maximum shows in both glacial/interglacial transitions an exponential increase from south to north. Termination II is characterized by a general higher dynamic as termination I. By means of the high resolution sampling density the impact of regional isotopic recognized melt-water events is recognized by an increase of endobenthic and t-ubiquitous species in the Norwegian-Greenland Seas sediments. During termination I the relative minimum between both INDAR maxima occur chronological with an decrease of calculated sea surface temperatures. This is interpreted as indication of the close pelagic - benthic coupling. The climatic signal in the northern North Atlantic recorded in the fossil benthic foraminiferal community shows a lower amplitude as in the Norwegian-Greenland Seas. The occurence of the epibenthic Cibicidoides wuellersforfi allows to evaluate the variability of the bottom water mass. In general at all core locations increasing lateral bottom currents are recognized with the occurence of the second younger INDAR maximum. In comparison with various paleo-climatological data sets fossil benthic foraminifers show a distinct koherence with changes of the atmospheric temperatures, the SSTs and the postglacial sea level increase. The benthic foraminiferal fauna is bound indirectly on and indicative for regional climatic changes, but principal dependent upon global climatic changes.
Resumo:
Isotopic ratios of Sr and Nd from lithogenic components of three isochronous core sections recovered from an east-west transect in the Eastern Mediterranean Sea (EMS) have been analyzed. The data are used for a quantitative estimate of the temporal and spatial variation of detrital flux to the EMS, assuming Saharan dust and Aegean/Nile particulate matter as dominant end members. It was established that the carbonate-free Saharan dust flux during deposition of the nonsapropel layers of marine oxygen isotope stage 5.4 (MIS 5.4) was similar to the present flux. During the deposition of sapropels S5 and S6, however, the Saharan dust input was drastically reduced and was not balanced by a change in the riverine influx at this time. Denser vegetation cover during more humid conditions may have reduced physical erosion and sediment removal in the source area. During marine oxygen isotope stage 6.2 (MIS 6.2) a pronounced increase of Saharan dust and detrital influx from the Aegean region is evident and implies more arid conditions in the southern and northern catchment areas. During this period, intersite variations are interpreted in terms of their geographic location relative to the seaways connecting the Aegean Sea and EMS. The width of the straits and hence the amount of sediment entering the eastern basins may have been affected by a low sea level that impeded interbasin sediment dispersal.
Resumo:
Paired analyses of Os isotope composition and concentration of bulk sediment and leachable Os in a metalliferous pelagic clay sequence from the North Pacific, ODP Site 886C, are used to reconstruct the marine Os isotope record and the particulate meteoritic Os flux between 65.5 and 78 Ma. Measured 187Os/188Os of bulk sediments ranges from approximately 0.64 to 0.32 and those of leach analyses are very similar to bulk analyses. Hydrogenous Os dominates the sedimentary Os inventory throughout most of the studied interval. As a result the measured 187Os/188Os of leachable Os approximates that of contemporaneous seawater. The ODP 886C record shows rising 187Os/188Os in the deepest portion of the core, with a local maximum of 0.66 close to 74 Ma. The 67-72 Ma portion of the record is characterized by nearly constant 187Os/188Os ratios close to 0.6. The structure of the marine Os isotope record from ODP 886C differs markedly from the seawater 87Sr/86Sr curve, which rises monotonically throughout the time interval studied here. Calculated particulate meteoritic Os fluxes are between 0.5 and 2 pg/cm**2/kyr throughout most of the studied interval. Two discrete intervals of the core (one of which is within Cretaceous Tertiary, boundary KTB interval) are characterized by higher fluxes of meteoritic Os. Excluding these two intervals, the average background flux of particulate meteoritic Os is roughly half of that estimated from analyses of Cenozoic marine sediments. These are the first Os isotope data to provide evidence of resolvable temporal variations in the background flux of particulate meteoritic material to the Earth.
Resumo:
The carbonate contents of sediments recovered at Leg 92 Sites 597, 598, and 601 were determined at 5-cm intervals. The long-term record of carbonate variation at Sites 597 and 598 shows the effect of decreasing dilution by hydrothermal phases as the sites moved away from the ridge crest at which they formed. Superimposed on this trend are high-amplitude variations in carbonate content. In the lower portions of Sites 597 and 598 the high-amplitude variations have a duration of a few hundred thousand years. The upper portion of the sediment column at both sites was deposited below the lysocline, and high-amplitude variations in this interval represent 1 to 2 m.y. The data suggest that only very intense carbonate dissolution events can be identified reliably at sites with low accumulation rates. At sites like Site 598, where the sedimentation rate is higher, the details of carbonate variation can be correlated with the carbonate lithostratigraphies developed for sites in the equatorial and North Pacific oceans.
Resumo:
High-resolution benthic oxygen isotope and dust flux records from Ocean Drilling Program site 659 have been analyzed to extend the astronomically calibrated isotope timescale for the Atlantic from 2.85 Ma back to 5 Ma. Spectral analysis of the delta18O record indicates that the 41-kyr period of Earth's orbital obliquity dominates the Pliocene record. This is shown to be true regardless of fundamental changes in the Earth's climate during the Pliocene. However, the cycles of Sahelian aridity fluctuations indicate a shift in spectral character near 3 Ma. From the early Pliocene to 3 Ma, the periodicities were dominantly precessional (19 and 23 kyr) and remained strong until 1.5 Ma. Subsequent to 3 Ma, the variance at the obliquity period (41 kyr) increased. The timescale tuned to precession suggests that the Pliocene was longer than previously estimated by more than 0.5 m.y. The tuned ages for the magnetic boundaries Gauss/Gilbert and Top Cochiti are about 6-8% older than the ages of the conventional timescale. A major phase of Pliocene northern hemisphere ice growth occurred between 3.15 Ma and 2.5 Ma. This was marked by a gradual increase in glacial Atlantic delta18O values of 1per mil and an increase in amplitude variations by up to 1.5 per mil, much larger than in the Pacific deepwater record (site 846). The first maxima occured in cold stages G6-96 between 2.7 Ma and 2.45 Ma. Prior to 3 Ma, the isotope record is characterized by predominantly low amplitude fluctuations (< 0.7 per mil). When obliquity forcing was at its minimum between 4.15 and 3.6 Ma and during the Kaena interval, delta18O amplitude fluctuations were minimal. From 4.9 to 4.3 Ma, the delta18O values decreased by about 0.5 per mil, reaching a long-term minimum at 4.15 Ma, suggesting higher deepwater temperatures or a deglaciation. Deepwater cooling and/or an increase in ice volume is indicated by a series of short-term delta18O fluctuations between 3.8 and 3.6 Ma.
Resumo:
Cores from the Atlantic Ibero-Moroccan continental rise and slope contain fine-grained Late Pleistocene and Holocene sediments. These young sediments cover the continental margin in large lensformed litho- and biostratigraphically well-defined units. The total sedimentation rates range from 4 cm/ 1000 yrs. to 27 cm/1000 yrs. off Portugal and from 6 cm/1000 yrs. to 14 cm/1000 yrs. off Morocco. Only a small proportion of these sediments usually consists of sand-sized particles (>0.063 mm) which are mostly dominated by foraminifera. Both planktonic and benthic foraminifera are much more abundant in Late Pleistocene and Holocene samples from the upper slope in comparison to those from the deeper slope and from the abyssal plains. Total sedimentation rates during cool and warm climatic stages are rather similar for both groups of foraminifera. For example, in Late Holocene sediments 7 x 10**3 benthic and 201 x 10**3 planktonic foraminifera (fraction 0.63 -0.20 mm) per 100 cm**2 and 1000 yrs. are preserved in the Tagus, 10-19 X 10**3 benthic and about 1.3 X 10**6 planktonic foraminifera are preserved in the Seine abyssal plain sediments. Values from the upper slope sediments are higher for benthic foraminifera by a factor of 60 off Portugal and 60 to 70 off Morocco. The values for planktonic ones differ by factors of 6-12 and 6 respectively. These numbers seem to reflect differences in production and preservation. Production rates of planktonic foraminifera generally seem to be somewhat higher during Holocene than during Late Pleistocene, and the rates of benthic foraminifera appear rather higher during Late Pleistocene than during Holocene.
Resumo:
The Agulhas Ridge, off the tip of Africa between the Atlantic and Indian Oceans, is ideally located to capture the evolution of Paleogene-early Neogene circulation patterns associated with global cooling. Multiproxy records of productivity (biogenic barium (Baex), opal, CaCO3 mass accumulation rates (MARs)), nutrient and organic carbon burial (reactive phosphorus (Pr) MARs), and redox state of deep waters (U enrichment) from Ocean Drilling Program (ODP) Site 1090 reflect hydrographic shifts in this region between the middle Eocene and early Oligocene (~9-33 Ma). Several peaks in increased export productivity and burial of organic matter occurred within the late Eocene (~36.5, ~34, and ~33.7 Ma), which along with surface hydrologic conditions favoring opaline organisms over calcareous organisms could have aided in the draw down of pCO2 to a threshold level that facilitated large ice sheet development on Antarctica in the earliest Oligocene. Our multiproxy approach illustrates the importance of vertical as well as spatial hydrographic reorganization in amplifying or driving climatic cooling of the middle Eocene to early Oligocene by facilitating increases in the relative or absolute burial of organic carbon.
Resumo:
he oxygen minimum zone (OMZ) off Vancouver Island was more oxygen depleted relative to modern conditions during the Allerød (~13.5 to 12.6 calendar kyr) and again from ~11 to 10 kyr. The timing of OMZ intensification is similar to that seen throughout the North Pacific, although the onset appears to have been delayed by ~1500 years off Vancouver Island. Radiocarbon dating of coeval benthic and planktonic foraminifera shows that between 16.0 and 12.6 kyr the age contrast between surface and intermediate waters (920 m depth) off Vancouver Island was similar to, or slightly less than, that today. There is no evidence of an increased age difference (i.e., decreased ventilation) during the deglaciation, particularly during the Allerød. However, sedimentary marine organic carbon concentration and mass accumulation rate increased substantially in the Allerød, suggesting that increased organic matter export was the principal cause of late Pleistocene OMZ intensification off Vancouver Island.