932 resultados para 321022 Radiology and Organ Imaging


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Bioluminescence imaging is widely used for cell-based assays and animal imaging studies, both in biomedical research and drug development. Its main advantages include its high-throughput applicability, affordability, high sensitivity, operational simplicity, and quantitative outputs. In malaria research, bioluminescence has been used for drug discovery in vivo and in vitro, exploring host-pathogen interactions, and studying multiple aspects of Plasmodium biology. While the number of fluorescent proteins available for imaging has undergone a great expansion over the last two decades, enabling simultaneous visualization of multiple molecular and cellular events, expansion of available luciferases has lagged behind. The most widely used bioluminescent probe in malaria research is the Photinus pyralis firefly luciferase, followed by the more recently introduced Click-beetle and Renilla luciferases. Ultra-sensitive imaging of Plasmodium at low parasite densities has not been previously achieved. With the purpose of overcoming these challenges, a Plasmodium berghei line expressing the novel ultra-bright luciferase enzyme NanoLuc, called PbNLuc has been generated, and is presented in this work. RESULTS: NanoLuc shows at least 150 times brighter signal than firefly luciferase in vitro, allowing single parasite detection in mosquito, liver, and sexual and asexual blood stages. As a proof-of-concept, the PbNLuc parasites were used to image parasite development in the mosquito, liver and blood stages of infection, and to specifically explore parasite liver stage egress, and pre-patency period in vivo. CONCLUSIONS: PbNLuc is a suitable parasite line for sensitive imaging of the entire Plasmodium life cycle. Its sensitivity makes it a promising line to be used as a reference for drug candidate testing, as well as the characterization of mutant parasites to explore the function of parasite proteins, host-parasite interactions, and the better understanding of Plasmodium biology. Since the substrate requirements of NanoLuc are different from those of firefly luciferase, dual bioluminescence imaging for the simultaneous characterization of two lines, or two separate biological processes, is possible, as demonstrated in this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Treatment of vascular malformations requires the placement of a needle within vessels which may be as small as 1 mm, with the current state of the art relying exclusively on two-dimensional fluoroscopy images for guidance. We hypothesize that the combination of stereotactic image guidance with existing targeting methods will result in faster and more reproducible needle placements, as well as reduced radiationexposure, when compared to standard methods based on fluoroscopy alone. METHODS The proposed navigation approach was evaluated in a phantom experiment designed to allow direct comparison with the conventional method. An anatomical phantom of the left forearm was constructed, including an independent control mechanism to indicate the attainment of the target position. Three interventionalists (one inexperienced, two of them frequently practice the conventional fluoroscopic technique) performed 45 targeting attempts utilizing the combined and 45 targeting attempts utilizing the standard approaches. RESULTS In all 45 attempts, the users were able to reach the target when utilizing the combined approach. In two cases, targeting was stopped after 15 min without reaching the target when utilizing only the C-arm. The inexperienced user was faster when utilizing the combined approach and applied significantly less radiation than when utilizing the conventional approach. Conversely, both experienced users were faster when using the conventional approach, in one case significantly so, with no significant difference in radiation dose when compared to the combined approach. CONCLUSIONS This work presents an initial evaluation of a combined navigation fluoroscopy targeting technique in a phantom study. The results suggest that, especially for inexperienced interventionalists, navigation may help to reduce the time and the radiation dose. Future work will focus on the improvement and clinical evaluation of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. Tissue engineering techniques offer a potential means to develop a tissue engineered construct (TEC) for the treatment of tissue and organ deficiencies. However, a lack of adequate vascularization is a limiting factor in the development of most viable engineered tissues. Vascular endothelial growth factor (VEGF) could aid in the development of a viable vascular network within TECs. The long-term goals of this research are to develop clinically relevant, appropriately vascularized TECs for use in humans. This project tested the hypothesis that the delivery of VEGF via controlled release from biodegradable microspheres would increase the vascular density and rate of angiogenesis within a model TEC. ^ Materials and methods. Biodegradable VEGF-encapsulated microspheres were manufactured using a novel method entitled the Solid Encapsulation/Single Emulsion/Solvent Extraction technique. Using a PLGA/PEG polymer blend, microspheres were manufactured and characterized in vitro. A model TEC using fibrin was designed for in vivo tissue engineering experimentation. At the appropriate timepoint, the TECs were explanted, and stained and quantified for CD31 using a novel semi-automated thresholding technique. ^ Results. In vitro results show the microspheres could be manufactured, stored, degrade, and release biologically active VEGF. The in vivo investigations revealed that skeletal muscle was the optimal implantation site as compared to dermis. In addition, the TECs containing fibrin with VEGF demonstrated significantly more angiogenesis than the controls. The TECs containing VEGF microspheres displayed a significant increase in vascular density by day 10. Furthermore, TECs containing VEGF microspheres had a significantly increased relative rate of angiogenesis from implantation day 5 to day 10. ^ Conclusions. A novel technique for producing microspheres loaded with biologically active proteins was developed. A defined concentration of microspheres can deliver a quantifiable level of VEGF with known release kinetics. A novel model TEC for in vivo tissue engineering investigations was developed. VEGF and VEGF microspheres stimulate angiogenesis within the model TEC. This investigation determined that biodegradable rhVEGF 165-encapsulated microspheres increased the vascular density and relative rate of angiogenesis within a model TEC. Future applications could include the incorporation of microvascular fragments into the model TEC and the incorporation of specific tissues, such as fat or bone. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Surgical site infections (SSIs) after abdominal surgeries account for approximately 26% of all reported SSIs. The Center for Disease Control and Prevention (CDC) defines 3 types of SSIs: superficial incisional, deep incisional, and organ/space. Preventing SSIs has become a national focus. This dissertation assesses several associations with the individual types of SSI in patients that have undergone colon surgery. ^ Methods: Data for this dissertation was obtained from the American College of Surgeons' National Surgical Quality Improvement Program (NSQIP); major colon surgeries were identified in the database that occurred between the time period of 2007 and 2009. NSQIP data includes more than 50 preoperative and 30 intraoperative factors; 40 collected postoperative occurrences are based on a follow-up period of 30 days from surgery. Initially, four individual logistic regressions were modeled to compare the associations between risk factors and each of the SSI groups: superficial, deep, organ/space and a composite of any single SSI. A second analysis used polytomous regression to assess simultaneously the associations between risk factors and the different types of SSIs, as well as, formally test the different effect estimates of 13 common risk factors for SSIs. The final analysis explored the association between venous thromboembolism (VTEs) and the different types of SSIs and risk factors. ^ Results: A total of 59,365 colon surgeries were included in the study. Overall, 13% of colon cases developed a single type of SSI; 8% of these were superficial SSIs, 1.4% was deep SSIs, and 3.8% were organ/space SSIs. The first article identifies the unique set of risk factors associated with each of the 4 SSI models. Distinct risk factors for superficial SSIs included factors, such as alcohol, chronic obstructive pulmonary disease, dyspnea and diabetes. Organ/space SSIs were uniquely associated with disseminated cancer, preoperative dialysis, preoperative radiation treatment, bleeding disorder and prior surgery. Risk factors that were significant in all models had different effect estimates. The second article assesses 13 common SSI risk factors simultaneously across the 3 different types of SSIs using polytomous regression. Then each risk factor was formally tested for the effect heterogeneity exhibited. If the test was significant the final model would allow for the effect estimations for that risk factor to vary across each type of SSI; if the test was not significant, the effect estimate would remain constant across the types of SSIs using the aggregate SSI value. The third article explored the relationship of venous thromboembolism (VTE) and the individual types of SSIs and risk factors. The overall incidence of VTEs after the 59,365 colon cases was 2.4%. All 3 types of SSIs and several risk factors were independently associated with the development of VTEs. ^ Conclusions: Risk factors associated with each type of SSI were different in patients that have undergone colon surgery. Each model had a unique cluster of risk factors. Several risk factors, including increased BMI, duration of surgery, wound class, and laparoscopic approach, were significant across all 4 models but no statistical inferences can be made about their different effect estimates. These results suggest that aggregating SSIs may misattribute and hide true associations with risk factors. Using polytomous regression to assess multiple risk factors with the multiple types of SSI, this study was able to identify several risk factors that had significant effect heterogeneity across the 3 types of SSI challenging the use of aggregate SSI outcomes. The third article recognizes the strong association between VTEs and the 3 types of SSIs. Clinicians understand the difference between superficial, deep and organ/space SSIs. Our results indicate that they should be considered individually in future studies.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An interleaved, dual resonance, volume localization technique for $\sp1$H/$\sp{31}$P magnetic resonance spectroscopy has been designed, implemented on a 2 T imager/spectrometer, and verified with phantom studies.^ Localization techniques, including several single voxel techniques and spectroscopic imaging, were implemented, and studies were performed to compare the efficiency of each sequence of $\sp1$H/$\sp{31}$P spectral acquisitions. The sequence chosen was a hybrid of the stimulated echo single voxel technique and the spectroscopic imaging technique.^ Water suppression during the $\sp1$H spectral acquisitions was accomplished by the use of three narrow bandwidth RF saturation pulses in combination with three spoiler gradients. The spoiler gradient amplitudes were selected on the basis of a numerical solution of the Bloch equations. A post-acquisition water suppression algorithm was used to minimize any residual water signal.^ For interleaved $\sp1$H/$\sp{31}$P acquisitions, a dual resonance RF coil was constructed and interfaced to the existing RF detection system via a custom-designed dual resonance transcoupler and switching system. Programmable attenuators were incorporated to allow for changes in receiver and transmitter attenuation "on the fly".^ To provide the rapidly switched gradient fields required for the $\sp1$H/$\sp{31}$P acquisitions, an actively screened gradient coil system was designed and implemented. With this system, gradient field rise times on the order of 100 $\mu$s were obtained. These rapid switching times were necessary for minimizing intrasequence delays and for improving localization quality and water suppression efficiency.^ The interleaved $\sp1$H/$\sp{31}$P volume localization technique was tested using a two-compartment phantom. Analysis of the data showed that the spectral contamination was less than three percent. One-to-one spatial correspondence of the $\sp1$H and $\sp{31}$P spectra was verified and allowed for direct correlation of the spectral data with a standard magnetic resonance image. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have analyzed the performance of a PET demonstrator formed by two sectors of four monolithic detector blocks placed face-to-face. Both front-end and read-out electronics have been evaluated by means of coincidence measurements using a rotating 22Na source placed at the center of the sectors in order to emulate the behavior of a complete full ring. A continuous training method based on neural network (NN) algorithms has been carried out to determine the entrance points over the surface of the detectors. Reconstructed images from 1 MBq 22Na point source and 22Na Derenzo phantom have been obtained using both filtered back projection (FBP) analytic methods and the OSEM 3D iterative algorithm available in the STIR software package [1]. Preliminary data on image reconstruction from a 22Na point source with Ø = 0.25 mm show spatial resolutions from 1.7 to 2.1 mm FWHM in the transverse plane. The results confirm the viability of this design for the development of a full-ring brain PET scanner compatible with magnetic resonance imaging for human studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a new projector model specifically tailored for fast list-mode tomographic reconstructions in Positron emission tomography (PET) scanners with parallel planar detectors. The model provides an accurate estimation of the probability distribution of coincidence events defined by pairs of scintillating crystals. This distribution is parameterized with 2D elliptical Gaussian functions defined in planes perpendicular to the main axis of the tube of response (TOR). The parameters of these Gaussian functions have been obtained by fitting Monte Carlo simulations that include positron range, acolinearity of gamma rays, as well as detector attenuation and scatter effects. The proposed model has been applied efficiently to list-mode reconstruction algorithms. Evaluation with Monte Carlo simulations over a rotating high resolution PET scanner indicates that this model allows to obtain better recovery to noise ratio in OSEM (ordered-subsets, expectation-maximization) reconstruction, if compared to list-mode reconstruction with symmetric circular Gaussian TOR model, and histogram-based OSEM with precalculated system matrix using Monte Carlo simulated models and symmetries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer’s Disease (AD) is the most common dementia in the elderly and is estimated to affect tens of millions of people worldwide. AD is believed to have a prodromal stage lasting ten or more years. While amyloid deposits, tau filaments, and loss of brain cells are characteristics of the disease, the loss of dendritic spines and of synapses predate such changes. Popular preclinical detection strategies mainly involve cerebrospinal fluid biomarkers, magnetic resonance imaging, metabolic PET scans, and amyloid imaging. One strategy missing from this list involves neurophysiological measures, which might be more sensitive to detect alterations in brain function. The Magnetoencephalography International Consortium of Alzheimer’s Disease arose out of the need to advance the use of Magnetoencephalography (MEG), as a tool in AD and pre-AD research. This paper presents a framework for using MEG in dementia research, and for short-term research priorities

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Surgical simulators are currently essential within any laparoscopic training program because they provide a low-stakes, reproducible and reliable environment to acquire basic skills. The purpose of this study is to determine the training learning curve based on different metrics corresponding to five tasks included in SINERGIA laparoscopic virtual reality simulator. Methods: Thirty medical students without surgical experience participated in the study. Five tasks of SINERGIA were included: Coordination, Navigation, Navigation and touch, Accurate grasping and Coordinated pulling. Each participant was trained in SINERGIA. This training consisted of eight sessions (R1–R8) of the five mentioned tasks and was carried out in two consecutive days with four sessions per day. A statistical analysis was made, and the results of R1, R4 and R8 were pair-wise compared with Wilcoxon signed-rank test. Significance is considered at P value <0.005. Results: In total, 84.38% of the metrics provided by SINERGIA and included in this study show significant differences when comparing R1 and R8. Metrics are mostly improved in the first session of training (75.00% when R1 and R4 are compared vs. 37.50% when R4 and R8 are compared). In tasks Coordination and Navigation and touch, all metrics are improved. On the other hand, Navigation just improves 60% of the analyzed metrics. Most learning curves show an improvement with better results in the fulfillment of the different tasks. Conclusions: Learning curves of metrics that assess the basic psychomotor laparoscopic skills acquired in SINERGIA virtual reality simulator show a faster learning rate during the first part of the training. Nevertheless, eight repetitions of the tasks are not enough to acquire all psychomotor skills that can be trained in SINERGIA. Therefore, and based on these results together with previous works, SINERGIA could be used as training tool with a properly designed training program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this work is twofold: first, to develop a process to automatically create parametric models of the aorta that can adapt to any possible intraoperative deformation of the vessel. Second, it intends to provide the tools needed to perform this deformation in real time, by means of a non-rigid registration method. This dynamically deformable model will later be used in a VR-based surgery guidance system for aortic catheterism procedures, showing the vessel changes in real time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhanced learning environments are arising with great success within the field of cognitive skills training in minimally invasive surgery (MIS) because they provides multiple benefits since they avoid time, spatial and cost constraints. TELMA [1,2] is a new technology enhanced learning platform that promotes collaborative and ubiquitous training of surgeons. This platform is based on four main modules: an authoring tool, a learning content and knowledge management system, an evaluation module and a professional network. TELMA has been designed and developed focused on the user; therefore it is necessary to carry out a user validation as final stage of the development. For this purpose, e-MIS validity [3] has been defined. This validation includes usability, contents and functionality validities both for the development and production stages of any e-Learning web platform. Using e-MIS validity, the e-Learning is fully validated since it includes subjective and objective metrics. The purpose of this study is to specify and apply a set of objective and subjective metrics using e-MIS validity to test usability, contents and functionality of TELMA environment within the development stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of big amount of data is a field with many years of research. It is centred in getting significant values, to make it easier to understand and interpret data. Being the analysis of interdependence between time series an important field of research, mainly as a result of advances in the characterization of dynamical systems from the signals they produce. In the medicine sphere, it is easy to find many researches that try to understand the brain behaviour, its operation mode and its internal connections. The human brain comprises approximately 1011 neurons, each of which makes about 103 synaptic connections. This huge number of connections between individual processing elements provides the fundamental substrate for neuronal ensembles to become transiently synchronized or functionally connected. A similar complex network configuration and dynamics can also be found at the macroscopic scales of systems neuroscience and brain imaging. The emergence of dynamically coupled cell assemblies represents the neurophysiological substrate for cognitive function such as perception, learning, thinking. Understanding the complex network organization of the brain on the basis of neuroimaging data represents one of the most impervious challenges for systems neuroscience. Brain connectivity is an elusive concept that refers to diferent interrelated aspects of brain organization: structural, functional connectivity (FC) and efective connectivity (EC). Structural connectivity refers to a network of physical connections linking sets of neurons, it is the anatomical structur of brain networks. However, FC refers to the statistical dependence between the signals stemming from two distinct units within a nervous system, while EC refers to the causal interactions between them. This research opens the door to try to resolve diseases related with the brain, like Parkinson’s disease, senile dementia, mild cognitive impairment, etc. One of the most important project associated with Alzheimer’s research and other diseases are enclosed in the European project called Blue Brain. The center for Biomedical Technology (CTB) of Universidad Politecnica de Madrid (UPM) forms part of the project. The CTB researches have developed a magnetoencephalography (MEG) data processing tool that allow to visualise and analyse data in an intuitive way. This tool receives the name of HERMES, and it is presented in this document. Analysis of big amount of data is a field with many years of research. It is centred in getting significant values, to make it easier to understand and interpret data. Being the analysis of interdependence between time series an important field of research, mainly as a result of advances in the characterization of dynamical systems from the signals they produce. In the medicine sphere, it is easy to find many researches that try to understand the brain behaviour, its operation mode and its internal connections. The human brain comprises approximately 1011 neurons, each of which makes about 103 synaptic connections. This huge number of connections between individual processing elements provides the fundamental substrate for neuronal ensembles to become transiently synchronized or functionally connected. A similar complex network configuration and dynamics can also be found at the macroscopic scales of systems neuroscience and brain imaging. The emergence of dynamically coupled cell assemblies represents the neurophysiological substrate for cognitive function such as perception, learning, thinking. Understanding the complex network organization of the brain on the basis of neuroimaging data represents one of the most impervious challenges for systems neuroscience. Brain connectivity is an elusive concept that refers to diferent interrelated aspects of brain organization: structural, functional connectivity (FC) and efective connectivity (EC). Structural connectivity refers to a network of physical connections linking sets of neurons, it is the anatomical structur of brain networks. However, FC refers to the statistical dependence between the signals stemming from two distinct units within a nervous system, while EC refers to the causal interactions between them. This research opens the door to try to resolve diseases related with the brain, like Parkinson’s disease, senile dementia, mild cognitive impairment, etc. One of the most important project associated with Alzheimer’s research and other diseases are enclosed in the European project called Blue Brain. The center for Biomedical Technology (CTB) of Universidad Politecnica de Madrid (UPM) forms part of the project. The CTB researches have developed a magnetoencephalography (MEG) data processing tool that allow to visualise and analyse data in an intuitive way. This tool receives the name of HERMES, and it is presented in this document.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work analysed the feasibility of using a fast, customized Monte Carlo (MC) method to perform accurate computation of dose distributions during pre- and intraplanning of intraoperative electron radiation therapy (IOERT) procedures. The MC method that was implemented, which has been integrated into a specific innovative simulation and planning tool, is able to simulate the fate of thousands of particles per second, and it was the aim of this work to determine the level of interactivity that could be achieved. The planning workflow enabled calibration of the imaging and treatment equipment, as well as manipulation of the surgical frame and insertion of the protection shields around the organs at risk and other beam modifiers. In this way, the multidisciplinary team involved in IOERT has all the tools necessary to perform complex MC dosage simulations adapted to their equipment in an efficient and transparent way. To assess the accuracy and reliability of this MC technique, dose distributions for a monoenergetic source were compared with those obtained using a general-purpose software package used widely in medical physics applications. Once accuracy of the underlying simulator was confirmed, a clinical accelerator was modelled and experimental measurements in water were conducted. A comparison was made with the output from the simulator to identify the conditions under which accurate dose estimations could be obtained in less than 3 min, which is the threshold imposed to allow for interactive use of the tool in treatment planning. Finally, a clinically relevant scenario, namely early-stage breast cancer treatment, was simulated with pre- and intraoperative volumes to verify that it was feasible to use the MC tool intraoperatively and to adjust dose delivery based on the simulation output, without compromising accuracy. The workflow provided a satisfactory model of the treatment head and the imaging system, enabling proper configuration of the treatment planning system and providing good accuracy in the dosage simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In search of novel genes expressed in metastatic prostate cancer, we subtracted cDNA isolated from benign prostatic hypertrophic tissue from cDNA isolated from a prostate cancer xenograft model that mimics advanced disease. One novel gene that is highly expressed in advanced prostate cancer encodes a 339-amino acid protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This structure suggests a potential function as a channel or transporter protein. This gene, named STEAP for six-transmembrane epithelial antigen of the prostate, is expressed predominantly in human prostate tissue and is up-regulated in multiple cancer cell lines, including prostate, bladder, colon, ovarian, and Ewing sarcoma. Immunohistochemical analysis of clinical specimens demonstrates significant STEAP expression at the cell–cell junctions of the secretory epithelium of prostate and prostate cancer cells. Little to no staining was detected at the plasma membranes of normal, nonprostate human tissues, except for bladder tissue, which expressed low levels of STEAP at the cell membrane. Protein analysis located STEAP at the cell surface of prostate-cancer cell lines. Our results support STEAP as a cell-surface tumor-antigen target for prostate cancer therapy and diagnostic imaging.