903 resultados para Égüa - Doenças
Resumo:
A novel method of matching stiffness and continuous variable damping of an ECAS (electronically controlled air suspension) based on LQG (linear quadratic Gaussian) control was proposed to simultaneously improve the road-friendliness and ride comfort of a two-axle school bus. Taking account of the suspension nonlinearities and target-height-dependent variation in suspension characteristics, a stiffness model of the ECAS mounted on the drive axle of the bus was developed based on thermodynamics and the key parameters were obtained through field tests. By determining the proper range of the target height for the ECAS of the fully-loaded bus based on the design requirements of vehicle body bounce frequency, the control algorithm of the target suspension height (i.e., stiffness) was derived according to driving speed and road roughness. Taking account of the nonlinearities of a continuous variable semi-active damper, the damping force was obtained through the subtraction of the air spring force from the optimum integrated suspension force, which was calculated based on LQG control. Finally, a GA (genetic algorithm)-based matching method between stepped variable damping and stiffness was employed as a benchmark to evaluate the effectiveness of the LQG-based matching method. Simulation results indicate that compared with the GA-based matching method, both dynamic tire force and vehicle body vertical acceleration responses are markedly reduced around the vehicle body bounce frequency employing the LQG-based matching method, with peak values of the dynamic tire force PSD (power spectral density) decreased by 73.6%, 60.8% and 71.9% in the three cases, and corresponding reduction are 71.3%, 59.4% and 68.2% for the vehicle body vertical acceleration. A strong robustness to variation of driving speed and road roughness is also observed for the LQG-based matching method.
Resumo:
There are a number of pressing issues facing contemporary online environments that are causing disputes among participants and platform operators and increasing the likelihood of external regulation. A number of solutions have been proposed, including industry self-governance, top-down regulation and emergent self-governance such as EVE Online’s “Council of Stellar Management”. However, none of these solutions seem entirely satisfying; facing challenges from developers who fear regulators will not understand their platforms, or players who feel they are not sufficiently empowered to influence the platform, while many authors have raised concerns over the implementation of top-down regulation, and why the industry may be well-served to pre-empt such action. This paper considers case studies of EVE Online and the offshore gambling industry, and whether a version of self-governance may be suitable for the future of the industry.
Resumo:
Textual document set has become an important and rapidly growing information source in the web. Text classification is one of the crucial technologies for information organisation and management. Text classification has become more and more important and attracted wide attention of researchers from different research fields. In this paper, many feature selection methods, the implement algorithms and applications of text classification are introduced firstly. However, because there are much noise in the knowledge extracted by current data-mining techniques for text classification, it leads to much uncertainty in the process of text classification which is produced from both the knowledge extraction and knowledge usage, therefore, more innovative techniques and methods are needed to improve the performance of text classification. It has been a critical step with great challenge to further improve the process of knowledge extraction and effectively utilization of the extracted knowledge. Rough Set decision making approach is proposed to use Rough Set decision techniques to more precisely classify the textual documents which are difficult to separate by the classic text classification methods. The purpose of this paper is to give an overview of existing text classification technologies, to demonstrate the Rough Set concepts and the decision making approach based on Rough Set theory for building more reliable and effective text classification framework with higher precision, to set up an innovative evaluation metric named CEI which is very effective for the performance assessment of the similar research, and to propose a promising research direction for addressing the challenging problems in text classification, text mining and other relative fields.