941 resultados para visuo-spatial memory
Resumo:
A discrete-time dynamics of a non-Markovian random walker is analyzed using a minimal model where memory of the past drives the present dynamics. In recent work N. Kumar et al., Phys. Rev. E 82, 021101 (2010)] we proposed a model that exhibits asymptotic superdiffusion, normal diffusion, and subdiffusion with the sweep of a single parameter. Here we propose an even simpler model, with minimal options for the walker: either move forward or stay at rest. We show that this model can also give rise to diffusive, subdiffusive, and superdiffusive dynamics at long times as a single parameter is varied. We show that in order to have subdiffusive dynamics, the memory of the rest states must be perfectly correlated with the present dynamics. We show explicitly that if this condition is not satisfied in a unidirectional walk, the dynamics is only either diffusive or superdiffusive (but not subdiffusive) at long times.
Resumo:
We develop an optical system for generating multiple light sheets. This is enabled by employing a special class of spatial filters in a cylindrical lens geometry. The proposed binary filter placed at the back aperture of the cylindrical lens results in the generation of a periodic transverse pattern extending along the z axis (i.e., multiple light sheets). Experimental results confirm the generation of multiple light sheets of thickness 6.6 mu m with an intersheet spacing of 13.4 mu m. The proposed imaging technique may facilitate three-dimensional imaging in nano-optics, fluorescence microscopy, and nanobiology. (C) 2014 Optical Society of America
Resumo:
Introduction: Immunomodulators are agents, which can modulate the immune response to specific antigens, while causing least toxicity to the host system. Being part of the modern vaccine formulations, these compounds have contributed remarkably to the field of therapeutics. Despite the successful record maintained by these agents, the requirement of novel immunomodulators keeps increasing due to the increasing severity of diseases. Hence, research regarding the same holds great importance. Areas covered: In this review, we discuss the role of immunomodulators in improving performance of various vaccines used for counteracting most threatening infectious diseases, mechanisms behind their action and criteria for development of novel immunomodulators. Expert opinion: Understanding the molecular mechanisms underlying immune response is a prerequisite for development of effective therapeutics as these are often exploited by pathogens for their own propagation. Keeping this in mind, the present research in the field of immunotherapy focuses on developing immunomodulators that would not only enhance the protection against pathogen, but also generate a long-term memory response. With the introduction of advanced formulations including combination of different kinds of immunomodulators, one can expect tremendous success in near future.
Resumo:
Investigations on the electrical switching, structural, optical and photoacoustic analysis have been undertaken on chalcogenide GeSe1.5S0.5 thin films of various thicknesses prepared by vacuum evaporation technique. The decrease of band gap energy with increase in film thickness has been explained using the `density of states model'. The structural units of the films are characterized using Raman spectroscopy and the deconvoluted Raman peaks obtained from Gaussian fit around 188 cm(-1), 204 cm(-1) and 214 cm(-1) favors Ge-chalcogen tetrahedral units forming corner and edge sharing tetrahedra. All the thin films samples have been exhibited memory-type electrical switching behavior. An enhancement in the threshold voltages of GeSe1.5S0.5 thin films have been observed with increase in film thickness. The thickness dependence of switching voltages provide an insight into the switching mechanism and it is explained by the Joule heating effect. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
As rapid brain development occurs during the neonatal period, environmental manipulation during this period may have a significant impact on sleep and memory functions. Moreover, rapid eye movement (REM) sleep plays an important role in integrating new information with the previously stored emotional experience. Hence, the impact of early maternal separation and isolation stress (MS) during the stress hyporesponsive period (SHRP) on fear memory retention and sleep in rats were studied. The neonatal rats were subjected to maternal separation and isolation stress during postnatal days 5-7 (6 h daily/3 d). Polysomnographic recordings and differential fear conditioning was carried out in two different sets of rats aged 2 months. The neuronal replay during REM sleep was analyzed using different parameters. MS rats showed increased time in REM stage and total sleep period also increased. MS rats showed fear generalization with increased fear memory retention than normal control (NC). The detailed analysis of the local field potentials across different time periods of REM sleep showed increased theta oscillations in the hippocampus, amygdala and cortical circuits. Our findings suggest that stress during SHRP has sensitized the hippocampus amygdala cortical loops which could be due to increased release of corticosterone that generally occurs during REM sleep. These rats when subjected to fear conditioning exhibit increased fear memory and increased, fear generalization. The development of helplessness, anxiety and sleep changes in human patients, thus, could be related to the reduced thermal, tactile and social stimulation during SHRP on brain plasticity and fear memory functions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Rugged energy landscapes find wide applications in diverse fields ranging from astrophysics to protein folding. We study the dependence of diffusion coefficient (D) of a Brownian particle on the distribution width (epsilon) of randomness in a Gaussian random landscape by simulations and theoretical analysis. We first show that the elegant expression of Zwanzig Proc. Natl. Acad. Sci. U.S.A. 85, 2029 (1988)] for D(epsilon) can be reproduced exactly by using the Rosenfeld diffusion-entropy scaling relation. Our simulations show that Zwanzig's expression overestimates D in an uncorrelated Gaussian random lattice - differing by almost an order of magnitude at moderately high ruggedness. The disparity originates from the presence of ``three-site traps'' (TST) on the landscape - which are formed by the presence of deep minima flanked by high barriers on either side. Using mean first passage time formalism, we derive a general expression for the effective diffusion coefficient in the presence of TST, that quantitatively reproduces the simulation results and which reduces to Zwanzig's form only in the limit of infinite spatial correlation. We construct a continuous Gaussian field with inherent correlation to establish the effect of spatial correlation on random walk. The presence of TSTs at large ruggedness (epsilon >> k(B)T) gives rise to an apparent breakdown of ergodicity of the type often encountered in glassy liquids. (C) 2014 AIP Publishing LLC.
Resumo:
Molecular spintronics, a field that utilizes the spin state of organic molecules to develop magneto-electronic devices, has shown an enormous scientific activity for more than a decade. But, in the last couple of years, new insights in understanding the fundamental phenomena of molecular interaction on magnetic surfaces, forming a hybrid interface, are presenting a new pathway for developing the subfield of interface-assisted molecular spintronics. The recent exploration of such hybrid interfaces involving carbon based aromatic molecules shows a significant excitement and promise over the previously studied single molecular magnets. In the above new scenario, hybridization of the molecular orbitals with the spin-polarized bands of the surface creates new interface states with unique electronic and magnetic character. This study opens up a molecular-genome initiative in designing new handles to functionalize the spin dependent electronic properties of the hybrid interface to construct spin-functional tailor-made devices. Through this article, we review this subject by presenting a fundamental understanding of the interface spin-chemistry and spin-physics by taking support of advanced computational and spectroscopy tools to investigate molecular spin responses with demonstration of new interface phenomena. Spin-polarized scanning tunneling spectroscopy is favorably considered to be an important tool to investigate these hybrid interfaces with intra-molecular spatial resolution. Finally, by addressing some of the recent findings, we propose novel device schemes towards building interface tailored molecular spintronic devices for applications in sensor, memory, and quantum computing.
Resumo:
Although uncertainties in material properties have been addressed in the design of flexible pavements, most current modeling techniques assume that pavement layers are homogeneous. The paper addresses the influence of the spatial variability of the resilient moduli of pavement layers by evaluating the effect of the variance and correlation length on the pavement responses to loading. The integration of the spatially varying log-normal random field with the finite-difference method has been achieved through an exponential autocorrelation function. The variation in the correlation length was found to have a marginal effect on the mean values of the critical strains and a noticeable effect on the standard deviation which decreases with decreases in correlation length. This reduction in the variance arises because of the spatial averaging phenomenon over the softer and stiffer zones generated because of spatial variability. The increase in the mean value of critical strains with decreasing correlation length, although minor, illustrates that pavement performance is adversely affected by the presence of spatially varying layers. The study also confirmed that the higher the variability in the pavement layer moduli, introduced through a higher value of coefficient of variation (COV), the higher the variability in the pavement response. The study concludes that ignoring spatial variability by modeling the pavement layers as homogeneous that have very short correlation lengths can result in the underestimation of the critical strains and thus an inaccurate assessment of the pavement performance. (C) 2014 American Society of Civil Engineers.
Resumo:
Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mgha(-1)) at spatial scales ranging from 5 to 250m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial ``dilution'' bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.
Resumo:
Large-scale estimates of the area of terrestrial surface waters have greatly improved over time, in particular through the development of multi-satellite methodologies, but the generally coarse spatial resolution (tens of kms) of global observations is still inadequate for many ecological applications. The goal of this study is to introduce a new, globally applicable downscaling method and to demonstrate its applicability to derive fine resolution results from coarse global inundation estimates. The downscaling procedure predicts the location of surface water cover with an inundation probability map that was generated by bagged derision trees using globally available topographic and hydrographic information from the SRTM-derived HydroSHEDS database and trained on the wetland extent of the GLC2000 global land cover map. We applied the downscaling technique to the Global Inundation Extent from Multi-Satellites (GIEMS) dataset to produce a new high-resolution inundation map at a pixel size of 15 arc-seconds, termed GIEMS-D15. GIEMS-D15 represents three states of land surface inundation extents: mean annual minimum (total area, 6.5 x 10(6) km(2)), mean annual maximum (12.1 x 10(6) km(2)), and long-term maximum (173 x 10(6) km(2)); the latter depicts the largest surface water area of any global map to date. While the accuracy of GIEMS-D15 reflects distribution errors introduced by the downscaling process as well as errors from the original satellite estimates, overall accuracy is good yet spatially variable. A comparison against regional wetland cover maps generated by independent observations shows that the results adequately represent large floodplains and wetlands. GIEMS-D15 offers a higher resolution delineation of inundated areas than previously available for the assessment of global freshwater resources and the study of large floodplain and wetland ecosystems. The technique of applying inundation probabilities also allows for coupling with coarse-scale hydro-climatological model simulations. (C) 2014 Elsevier Inc All rights reserved.
Resumo:
Using the spatial modulation approach, where only one transmit antenna is active at a time, we propose two transmission schemes for two-way relay channel using physical layer network coding with space time coding using coordinate interleaved orthogonal designs (CIODs). It is shown that using two uncorrelated transmit antennas at the nodes, but using only one RF transmit chain and space-time coding across these antennas can give a better performance without using any extra resources and without increasing the hardware implementation cost and complexity. In the first transmission scheme, two antennas are used only at the relay, adaptive network coding (ANC) is employed at the relay and the relay transmits a CIOD space time block code (STBC). This gives a better performance compared to an existing ANC scheme for two-way relay channel which uses one antenna each at all the three nodes. It is shown that for this scheme at high SNR the average end-to-end symbol error probability (SEP) is upper bounded by twice the SEP of a point-to-point fading channel. In the second transmission scheme, two transmit antennas are used at all the three nodes, CIOD STBCs are transmitted in multiple access and broadcast phases. This scheme provides a diversity order of two for the average end-to-end SEP with an increased decoding complexity of O(M-3) for an arbitrary signal set and O(M-2 root M) for square QAM signal set. Simulation results show that the proposed schemes performs better than the existing ANC schemes under perfect and imperfect channel state information.
Resumo:
Modulus variation of NiTi shape memory alloy has been investigated at microstructural level through nano dynamical mechanical analysis and compared with bulk experimental measurements. The differences between the modulus values at the macro and micro level as well as within the micro level are discussed and the corresponding variations have been explained based on the crystal structure, orientation and misorientation. The experimental results confirm a higher modulus value for the martensite phase that is in agreement with the theoretical predictions. (C) 2015 Elsevier B. V. All rights reserved.
Resumo:
We propose a laser interference technique for the fabrication of 3D nano-structures. This is possible with the introduction of specialized spatial filter in a 2 pi cylindrical lens system (consists of two opposing cylindrical lens sharing a common geometrical focus). The spatial filter at the back-aperture of a cylindrical lens gives rise to multiple light-sheet patterns. Two such interfering counter-propagating light-sheet pattern result in periodic 3D nano-pillar structure. This technique overcomes the existing slow point-by-point scanning, and has the ability to pattern selectively over a large volume. The proposed technique allows large-scale fabrication of periodic structures. Computational study shows a field-of-view (patterning volume) of approximately 12: 2mm(3) with the pillar-size of 80 nm and inter-pillar separation of 180 nm. Applications are in nano-waveguides, 3D nano-electronics, photonic crystals, and optical microscopy. (C) 2015 AIP Publishing LLC.
Resumo:
This paper presents a low energy memory decoder architecture for ultra-low-voltage systems containing multiple voltage domains. Due to limitations in scalability of memory supply voltages, these systems typically contain a core operating at subthreshold voltages and memories operating at a higher voltage. This difference in voltage provides a timing slack on the memory path as the core supply is scaled. The paper analyzes the feasibility and trade-offs in utilizing this timing slack to operate a greater section of memory decoder circuitry at the lower supply. A 256x16-bit SRAM interface has been designed in UMC 65nm low-leakage process to evaluate the above technique with the core and memory operating at 280 mV and 500 mV respectively. The technique provides a reduction of up to 20% in energy/cycle of the row decoder without any penalty in area and system-delay.
Resumo:
3-D full-wave method of moments (MoM) based electromagnetic analysis is a popular means toward accurate solution of Maxwell's equations. The time and memory bottlenecks associated with such a solution have been addressed over the last two decades by linear complexity fast solver algorithms. However, the accurate solution of 3-D full-wave MoM on an arbitrary mesh of a package-board structure does not guarantee accuracy, since the discretization may not be fine enough to capture spatial changes in the solution variable. At the same time, uniform over-meshing on the entire structure generates a large number of solution variables and therefore requires an unnecessarily large matrix solution. In this paper, different refinement criteria are studied in an adaptive mesh refinement platform. Consequently, the most suitable conductor mesh refinement criterion for MoM-based electromagnetic package-board extraction is identified and the advantages of this adaptive strategy are demonstrated from both accuracy and speed perspectives. The results are also compared with those of the recently reported integral equation-based h-refinement strategy. Finally, a new methodology to expedite each adaptive refinement pass is proposed.