982 resultados para virtual topology, decomposition, hex meshing algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural Support Vector Machines (SSVMs) have become a popular tool in machine learning for predicting structured objects like parse trees, Part-of-Speech (POS) label sequences and image segments. Various efficient algorithmic techniques have been proposed for training SSVMs for large datasets. The typical SSVM formulation contains a regularizer term and a composite loss term. The loss term is usually composed of the Linear Maximum Error (LME) associated with the training examples. Other alternatives for the loss term are yet to be explored for SSVMs. We formulate a new SSVM with Linear Summed Error (LSE) loss term and propose efficient algorithms to train the new SSVM formulation using primal cutting-plane method and sequential dual coordinate descent method. Numerical experiments on benchmark datasets demonstrate that the sequential dual coordinate descent method is faster than the cutting-plane method and reaches the steady-state generalization performance faster. It is thus a useful alternative for training SSVMs when linear summed error is used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new type of multi-port isolated bidirectional DC-DC converter is proposed in this study. In the proposed converter, transfer of power takes place through addition of magnetomotive forces generated by multiple windings on a common transformer core. This eliminates the need for a centralised storage capacitor to interface all the ports. Hence, the requirement of an additional power transfer stage from the centralised capacitor can also be eliminated. The converter can be used for a multi-input, multi-output (MIMO) system. A pulse width modulation (PWM) strategy for controlling simultaneous power flow in the MIMO converter is also proposed. The proposed PWM scheme works in the discontinuous conduction mode. The leakage inductance can be chosen to aid power transfer. By using the proposed converter topology and PWM scheme, the need to compute power flow equations to determine the magnitude and direction of power flow between ports is alleviated. Instead, a simple controller structure based on average current control can be used to control the power flow. This study discusses the operating phases of the proposed multi-port converter along with its PWM scheme, the design process for each of the ports and finally experimental waveforms that validate the multi-port scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Reeb graph of a scalar function tracks the evolution of the topology of its level sets. This paper describes a fast algorithm to compute the Reeb graph of a piecewise-linear (PL) function defined over manifolds and non-manifolds. The key idea in the proposed approach is to maximally leverage the efficient contour tree algorithm to compute the Reeb graph. The algorithm proceeds by dividing the input into a set of subvolumes that have loop-free Reeb graphs using the join tree of the scalar function and computes the Reeb graph by combining the contour trees of all the subvolumes. Since the key ingredient of this method is a series of union-find operations, the algorithm is fast in practice. Experimental results demonstrate that it outperforms current generic algorithms by a factor of up to two orders of magnitude, and has a performance on par with algorithms that are catered to restricted classes of input. The algorithm also extends to handle large data that do not fit in memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The q-Gaussian distribution results from maximizing certain generalizations of Shannon entropy under some constraints. The importance of q-Gaussian distributions stems from the fact that they exhibit power-law behavior, and also generalize Gaussian distributions. In this paper, we propose a Smoothed Functional (SF) scheme for gradient estimation using q-Gaussian distribution, and also propose an algorithm for optimization based on the above scheme. Convergence results of the algorithm are presented. Performance of the proposed algorithm is shown by simulation results on a queuing model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a multilevel flying capacitor inverter topology suitable for generating multilevel dodecagonal space vectors for an induction motor drive, is proposed. Because of the dodecagonal space vectors, it has increased modulation range with the absence of all 6n +/- 1, (n=odd) harmonics in the phase voltage and currents. The topology, realized by flying capacitor three level inverters feeding an open-end winding induction motor, does not suffer the neutral point voltage imbalance issues seen in NPC inverters and the capacitors have inherent charge-balancing capability with PWM control using switching state redundancies. Furthermore, the proposed technique uses lesser number of power supplies compared to cascaded H-bridge or NPC based dodecagonal schemes and has better ride-through capability. Finally, the voltage control is obtained through a simple carrier-based space vector PWM scheme implemented on a DSP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast content addressable data access mechanisms have compelling applications in today's systems. Many of these exploit the powerful wildcard matching capabilities provided by ternary content addressable memories. For example, TCAM based implementations of important algorithms in data mining been developed in recent years; these achieve an an order of magnitude speedup over prevalent techniques. However, large hardware TCAMs are still prohibitively expensive in terms of power consumption and cost per bit. This has been a barrier to extending their exploitation beyond niche and special purpose systems. We propose an approach to overcome this barrier by extending the traditional virtual memory hierarchy to scale up the user visible capacity of TCAMs while mitigating the power consumption overhead. By exploiting the notion of content locality (as opposed to spatial locality), we devise a novel combination of software and hardware techniques to provide an abstraction of a large virtual ternary content addressable space. In the long run, such abstractions enable applications to disassociate considerations of spatial locality and contiguity from the way data is referenced. If successful, ideas for making content addressability a first class abstraction in computing systems can open up a radical shift in the way applications are optimized for memory locality, just as storage class memories are soon expected to shift away from the way in which applications are typically optimized for disk access locality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of optimal routing in a multi-stage network of queues with constraints on queue lengths. We develop three algorithms for probabilistic routing for this problem using only the total end-to-end delays. These algorithms use the smoothed functional (SF) approach to optimize the routing probabilities. In our model all the queues are assumed to have constraints on the average queue length. We also propose a novel quasi-Newton based SF algorithm. Policies like Join Shortest Queue or Least Work Left work only for unconstrained routing. Besides assuming knowledge of the queue length at all the queues. If the only information available is the expected end-to-end delay as with our case such policies cannot be used. We also give simulation results showing the performance of the SF algorithms for this problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time series classification deals with the problem of classification of data that is multivariate in nature. This means that one or more of the attributes is in the form of a sequence. The notion of similarity or distance, used in time series data, is significant and affects the accuracy, time, and space complexity of the classification algorithm. There exist numerous similarity measures for time series data, but each of them has its own disadvantages. Instead of relying upon a single similarity measure, our aim is to find the near optimal solution to the classification problem by combining different similarity measures. In this work, we use genetic algorithms to combine the similarity measures so as to get the best performance. The weightage given to different similarity measures evolves over a number of generations so as to get the best combination. We test our approach on a number of benchmark time series datasets and present promising results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An operator-splitting finite element method for solving high-dimensional parabolic equations is presented. The stability and the error estimates are derived for the proposed numerical scheme. Furthermore, two variants of fully-practical operator-splitting finite element algorithms based on the quadrature points and the nodal points, respectively, are presented. Both the quadrature and the nodal point based operator-splitting algorithms are validated using a three-dimensional (3D) test problem. The numerical results obtained with the full 3D computations and the operator-split 2D + 1D computations are found to be in a good agreement with the analytical solution. Further, the optimal order of convergence is obtained in both variants of the operator-splitting algorithms. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a multilevel inverter topology suitable for the generation of dodecagonal space vectors instead of hexagonal space vectors as in the case of conventional schemes. This feature eliminates all the 6n +/- 1 (n = odd) harmonics from the phase voltages and currents in the entire modulation range with an increase in the linear modulation range. The topology is realized by flying capacitor-based three-level inverters feeding from two ends of an open-end winding induction motor with asymmetric dc links. The flying capacitor voltages are tightly controlled throughout the modulation range using redundant switching states for any load power factor. A simple and fast carrier-based space-vector pulsewidth modulation (PWM) scheme is also proposed for the topology which utilizes only the sampled amplitudes of the reference wave for the PWM timing computation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers sequential hypothesis testing in a decentralized framework. We start with two simple decentralized sequential hypothesis testing algorithms. One of which is later proved to be asymptotically Bayes optimal. We also consider composite versions of decentralized sequential hypothesis testing. A novel nonparametric version for decentralized sequential hypothesis testing using universal source coding theory is developed. Finally we design a simple decentralized multihypothesis sequential detection algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-complexity near-optimal detection of signals in MIMO systems with large number (tens) of antennas is getting increased attention. In this paper, first, we propose a variant of Markov chain Monte Carlo (MCMC) algorithm which i) alleviates the stalling problem encountered in conventional MCMC algorithm at high SNRs, and ii) achieves near-optimal performance for large number of antennas (e.g., 16×16, 32×32, 64×64 MIMO) with 4-QAM. We call this proposed algorithm as randomized MCMC (R-MCMC) algorithm. Second, we propose an other algorithm based on a random selection approach to choose candidate vectors to be tested in a local neighborhood search. This algorithm, which we call as randomized search (RS) algorithm, also achieves near-optimal performance for large number of antennas with 4-QAM. The complexities of the proposed R-MCMC and RS algorithms are quadratic/sub-quadratic in number of transmit antennas, which are attractive for detection in large-MIMO systems. We also propose message passing aided R-MCMC and RS algorithms, which are shown to perform well for higher-order QAM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time-series analysis of satellite images utilizing pixel spectral information for image clustering and region based segmentation for extracting water covered regions. MODIS satellite images are analyzed at two stages: before flood and during flood. Multi-temporal MODIS images are processed in two steps. In the first step, clustering algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to distinguish the water regions from the non-water based on spectral information. These algorithms are chosen since they are quite efficient in solving multi-modal optimization problems. These classified images are then segmented using spatial features of the water region to extract the river. From the results obtained, we evaluate the performance of the methods and conclude that incorporating region based image segmentation along with clustering algorithms provides accurate and reliable approach for the extraction of water covered region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

with the development of large scale wireless networks, there has been short comings and limitations in traditional network topology management systems. In this paper, an adaptive algorithm is proposed to maintain topology of hybrid wireless superstore network by considering the transactions and individual network load. The adaptations include to choose the best network connection for the response, and to perform network Connection switching when network situation changes. At the same time, in terms of the design for topology management systems, aiming at intelligence, real-time, the study makes a step-by-step argument and research on the overall topology management scheme. Architecture for the adaptive topology management of hybrid wireless networking resources is available to user’s mobile device. Simulation results describes that the new scheme has outperformed the original topology management and it is simpler than the original rate borrowing scheme.