994 resultados para vapour transportation deposition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper. we investigate the influences of the initial nitridation of sapphire substrates on the optical and structural characterizations in GaN films. Two GaN samples with and without 3 min nitridation process were investigated by photoluminescence (PL) spectroscopy in the temperature range of 12-300 K and double-crystal X-ray diffraction (XRD). In the 12 K PL spectra of the GaN sample without nitridation, four dominant peaks at 3.476, 3.409 3.362 and 3.308 eV were observed, which were assigned to donor bound exciton, excitons bound to stacking faults and extended structural defects. In the sample with nitridation, three peaks at 3.453, 3.365. and 3.308 eV were observed at 12 K, no peak related to stacking faults. XRD results at different reflections showed that there are more stacking faults in the samples without nitridation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our recent report, [Xu , Appl. Phys. Lett. 76, 152 (2000)], profile distributions of five elements in the GaN/sapphire system have been obtained using secondary ion-mass spectroscopy. The results suggested that a thin degenerate n(+) layer at the interface is the main source of the n-type conductivity for the whole film. The further studies in this article show that this n(+) conductivity is not only from the contribution of nitride-site oxygen (O-N), but also from the gallium-site silicon (Si-Ga) donors, with activation energies 2 meV (for O-N) and 42 meV (for Si-Ga), respectively. On the other hand, Al incorporated on the Ga sublattice reduces the concentration of compensating Ga-vacancy acceptors. The two-donor two-layer conduction, including Hall carrier concentration and mobility, has been modeled by separating the GaN film into a thin interface layer and a main bulk layer of the GaN film. The bulk layer conductivity is to be found mainly from a near-surface thin layer and is temperature dependent. Si-Ga and O-N should also be shallow donors and V-Ga-O or V-Ga-Al should be compensation sites in the bulk layer. The best fits for the Hall mobility and the Hall concentration in the bulk layer were obtained by taking the acceptor concentration N-A=1.8x10(17) cm(-3), the second donor concentration N-D2=1.0x10(18) cm(-3), and the compensation ratio C=N-A/N-D1=0.6, which is consistent with Rode's theory. Saturation of carriers and the low value of carrier mobility at low temperature can also be well explained. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon films were deposited by mass-selected ion beam technique with ion energies 50-200eV at a substrate temperature from room temperature to 80 degreesC,. For the energies used, smooth diamond-like carbon films were deposited at room temperature. When the substrate temperature was 600 degreesC,rough graphitic films were produced. But highly oriented carbon tubes were observed when the energies were larger than 140eV at 800 degreesC. They were perpendicular to the surface and parallel to each other. preferred orientation of graphite basic plane was observed by high-resolution electron microscopy. Shallow ion implantation and stress are responsible for this orientation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epitaxial lateral overgrowth (ELO) of cubic GaN by metalorganic chemical vapor deposition has been performed on SiO2-patterned GaN laver. The mechanism of lateral overgrowth is studied It was found that the morphology of ELO GaN stripes strongly depended on the direction of stripe window openings, which was discussed based on the different growth rates of (1 1 1)A and (1 1 1)B. Under the optimized growth condition, single-phase cubic GaN was deposited successfully. The peak position of near-band emission in ELO GaN has a redshift of 13 meV compared with the conventionally grown sample, which may be due to the partial release of stress during the ELO process. (C) 2001 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1.35 mum photoluminescence (PL) with a narrow linewidth of only 19.2 meV at room temperature has been achieved in In0.5Ga0.5As islands structure grown on GaAs (1 0 0) substrate by solid-source molecular beam epitaxy. Atomic force microscopy (AFM) measurement reveals that the 16-ML-thick In0.5Ga0.5As islands show quite uniform InGaAs mounds morphology along the [ 1(1) over bar 0] direction with a periodicity of about 90 nm in the [1 1 0] direction. Compared with the In0.5Ga0.5As alloy quantum well (QW) of the same width, the In0.5Ga0.5As islands structure always shows a lower PL peak energy and narrower full-width at half-maximum (FWHM), also a stronger PL intensity at low excitation power and more efficient confinement of the carriers. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strains in cubic GaN films grown on GaAs (001) were measured by a triple-axis x-ray diffraction method. Residual strains in the as-grown epitaxial films were in compression, contrary to the predicted tensile strains caused by large lattice mismatch between epilayers and GaAs substrates (20%). It was also found that the relief of strains in the GaN films has a complicated dependence on the growth conditions. We interpreted this as the interaction between the lattice mismatch and thermal mismatch stresses. The fully relaxed lattice constants of cubic GaN are determined to be 4.5038 +/- 0.0009 Angstrom, which is in excellent agreement with the theoretical prediction of 4.503 Angstrom. (C) 2000 American Institute of Physics. [S0021-8979(00)07918-4].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence measurements have been performed on cubic GaN films with carrier concentration as low as 3 x 10(13) cm(-3). From the temperature and excitation intensity dependence, the emission lines at 3.268, 3.150 and 3.081 eV were assigned to the excitonic, donor-acceptor pair, and free-to-acceptor transitions, respectively Additionally, we observed two additional emission lines at 2.926 and 2.821 eV, and suggested that they belong to donor-acceptor pair transitions. Furthermore, from the temperature dependence of integral intensities, we confirmed that three donor-acceptor pair transitions (3.150, 2.926, and 2.821 eV) are from a common shallow donor to three different accepters. The excitonic emission at 3.216 eV has a full-width-at-half-maximum value of 41 meV at room temperature, which indicates a good optical quality of our sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cubic GaN(c-GaN) films are grown on GaAs(001) substrates by metalorganic chemical vapor deposition (MOCVD). Two GaN samples were grown with different buffer layer, the deposition time of each was 1 and 3 min, respectively. 4-circle X-ray double crystal diffraction (XRDCD) was used to study the secondary crystallographic phases presented in the c-GaN films. The phase composition of the epilayers was determined by X-ray reciprocal space mapping. The intensities of the c-GaN(002) and h-GaN(10 (1) over bar 1) planes detected in the mapping were investigated by omega scans. The content of the hexagonal phase inclusions in the c-GaN films was calculated to about 1.6 and 7.9%, respectively. The thicker buffer layer is not preferable for growing high quality pure c-GaN films. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present some results on the effect of initial buffer layer on the crystalline quality of Cubic GaN epitaxial layers grown on GaAs(100) substrates by metalorganic chemical vapor deposition. Photoluminescence and Hall measurements were performed to characterize the electrical and optical properties of cubic GaN. The crystalline quality subsequently grown high-temperature (HT) cubic GaN layers strongly depended on thermal effects during the temperature ramping process after low temperature (LT) growth of the buffer layers. Atomic force microscope (AFM) and reflection high-energy electron diffraction (RHEED) were employed to investigate this temperature ramping process. Furthermore, the role of thermal treatment during the temperature ramping process was identified. Using the optimum buffer layer, the full width at half maxim (FWHM) at room temperature photoluminescence 5.6 nm was achieved. To our knowledge, this is the best FWHM value for cubic GaN to date. The background carrier concentration was as low as 3 x 10(13) cm(-3). (C) 2000 Published by Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical properties of cubic GaN films have been investigated in the temperature range of 10-300 K. Five peaks were observed at 10 K. From the dependence of photoluminescence emissions on the temperature and excitation intensity, we have assigned two of the five peaks (2.926 and 2.821 eV) to donor-acceptor pair (DAP) transitions. Furthermore, these two peaks were found to be related to a common shallow donor involved in the peak position previously reported at 3.150 eV. The intensities of DAP transitions were much weaker than that of excitonic emission even at low temperature, indicating a relatively high purity of our samples. (C) 2000 American Institute of Physics. [S0003-6951(00)00921-9].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new alternative method to grow the relaxed Ge0.24Si0.76 layer with a reduced dislocation density by ultrahigh vacuum chemical vapor deposition is reported in this paper. A 1000-Angstrom Ge0.24Si0.76 layer was first grown on a Si(100) substrate. Then a 500-Angstrom Si layer and a subsequent 5000-Angstrom Ge0.24Si0.76 overlayer followed. All these three layers were grown at 600 degrees C. After being removed from the growth system to air, the sample was first annealed at 850 degrees C for 30 min, and then was investigated by cross-sectional transmission electron microscopy and Rutherford backscattering spectroscopy. It is shown that the 5000-Angstrom Ge0.24Si0.76 thick over layer is perfect, and most of the threading dislocations are located in the embedded thin Si layer and the lower 1000-Angstrom Ge0.24Si0.76 layer. The relaxation ratio of the over layer is deduced to be 0.8 from Raman spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The micro-Raman spectroscopy and infrared (IR) spectroscopy have been performed for the study of the microstructure of amorphous hydrogenated oxidized silicon (alpha-SiOx,:H) films prepared by Plasma Enhanced Chemical Vapor Deposition technique. It is found that a-SiOx:H consists of two phases: an amorphous silicon-rich phase and an oxygen-rich phase mainly comprised of HSi-SiO2 and HSi-O-3. The Raman scattering; results exhibit that the frequency of TO-like mode of amorphous silicon red-shifts with decreasing size of silicon-rich region. This is related to the quantum confinement effects, similar to the nanocrystalline silicon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoped hydrogenated microcrystalline silicon (mu c-Si:H) thin films were prepared at low temperature by hot wire chemical vapor deposition (HWCVD). Microstructures of the mu c-Si:H films with different H-2/SiH4 ratios and deposition pressures have been characterized by infrared spectroscopy X-ray diffraction (XRD), Raman scattering, Fourier transform (FTIR), cross-sectional transmission electron microscopy (TEM) and small angle X-ray scattering (SAX). The crystallization of silicon thin film was enhanced by hydrogen dilution and deposition pressure. The TEM result shows the columnar growth of mu c-Si:H thin films. An initial microcrystalline Si layer on the glass substrate, instead of the amorphous layer commonly observed in plasma enhanced chemical vapor deposition (PECVD), was observed from TEM and backside incident Raman spectra. The SAXS data indicate an enhancement of the mass density of mu c-Si:H films by hydrogen dilution. Finally, combining the FTIR data with the SAXS experiment suggests that the Si--H bonds in mu c-Si:H and in polycrystalline Si thin films are located at the grain boundaries. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the growth of GaN buffers by metalorganic chemical vapor deposition (MOCVD) on GaAs (100) substrates. Atomic force microscope (AFM) and reflection high-energy electron diffraction (RHEED) were employed to study the dependence of the nucleation on the growth temperature, growth rate, annealing effect, and growth time. A two-step growth sequence must be used to optimize and control the nucleation and the subsequent growth independently. The size and distribution of islands and the thickness of buffer layers have a crucial role on the quality of GaN layers. Based on the experimental results, a model was given to interpret the formation of hexagonal-phase GaN in the cubic-phase GaN layers. Using an optimum buffer layer, the strong near-band emission of cubic GaN with full-width at half maximum (FWHM) value as small as 5.6 nm was observed at room temperature. The background carrier concentration was estimated to be in the range of 10(13) similar to 10(14) cm(-3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of room-temperature optical transitions in a Mg-doped cubic GaN epilayer grown on GaAs(100) by metalorganic chemical vapor deposition has been investigated. By examining the dependence of photoluminescence on the excitation intensity (which varied over four orders) at room temperature, four different emissions with different origins were identified. A blue emission at similar to 3.037 eV was associated with a shallow Mg acceptor, while three different lower-energy emissions at similar to 2.895, similar to 2.716, and similar to 2.639 eV were associated with a deep Mg complex. In addition to a shallow acceptor at E congruent to 0.213 eV, three Mg-related deep defect levels were also found at around 215, 374, and 570 meV (from the conduction band). (C) 2000 American Institute of Physics. [S0021-8979(00)01904-6].