899 resultados para uncertanin nonholonomic dynamic system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assessing users’ benefit in a transport policy implementation has been studied by many researchers using theoretical or empirical measures. However, few of them measure users’ benefit in a different way from the consumer surplus. Therefore, this paper aims to assess a new measure of user benefits by weighting consumer surplus in order to include equity assessment for different transport policies simulated in a dynamic middle-term LUTI model adapted to the case study of Madrid. Three different transport policies, including road pricing, parking charge and public transport improvement have been simulated through the Metropolitan Activity Relocation Simulator, MARS, the LUTI calibrated model for Madrid). A social welfare function (WF) is defined using a cost benefit analysis function that includes mainly costs and benefits of users and operators of the transport system. Particularly, the part of welfare function concerning the users, (i.e. consumer surplus), is modified by a compensating weight (CW) which represents the inverse of household income level. Based on the modified social welfare function, the effects on the measure of users benefits are estimated and compared with the old WF ́s results as well. The result of the analysis shows that road pricing leads a negative effect on the users benefits specially on the low income users. Actually, the road pricing and parking charge implementation results like a regressive policy especially at long term. Public transport improvement scenario brings more positive effects on low income user benefits. The integrated (road pricing and increasing public services) policy scenario is the one which receive the most user benefits. The results of this research could be a key issue to understanding the relationship between transport systems policies and user benefits distribution in a metropolitan context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present two approaches to cluster dialogue-based information obtained by the speech understanding module and the dialogue manager of a spoken dialogue system. The purpose is to estimate a language model related to each cluster, and use them to dynamically modify the model of the speech recognizer at each dialogue turn. In the first approach we build the cluster tree using local decisions based on a Maximum Normalized Mutual Information criterion. In the second one we take global decisions, based on the optimization of the global perplexity of the combination of the cluster-related LMs. Our experiments show a relative reduction of the word error rate of 15.17%, which helps to improve the performance of the understanding and the dialogue manager modules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Integrated Safety Assessment (ISA) methodology, developed by the Spanish Nuclear Safety Council (CSN), has been applied to a thermo-hydraulical analysis of a Westinghouse 3-loop PWR plant by means of the dynamic event trees (DET) for Steam Generator Tube Rupture (SGTR) sequences. The ISA methodology allows obtaining the SGTR Dynamic Event Tree taking into account the operator actuation times. Simulations are performed with SCAIS (Simulation Code system for Integrated Safety Assessment), which includes a dynamic coupling with MAAP thermal hydraulic code. The results show the capability of the ISA methodology and SCAIS platform to obtain the DET of complex sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most data stream classification techniques assume that the underlying feature space is static. However, in real-world applications the set of features and their relevance to the target concept may change over time. In addition, when the underlying concepts reappear, reusing previously learnt models can enhance the learning process in terms of accuracy and processing time at the expense of manageable memory consumption. In this paper, we propose mining recurring concepts in a dynamic feature space (MReC-DFS), a data stream classification system to address the challenges of learning recurring concepts in a dynamic feature space while simultaneously reducing the memory cost associated with storing past models. MReC-DFS is able to detect and adapt to concept changes using the performance of the learning process and contextual information. To handle recurring concepts, stored models are combined in a dynamically weighted ensemble. Incremental feature selection is performed to reduce the combined feature space. This contribution allows MReC-DFS to store only the features most relevant to the learnt concepts, which in turn increases the memory efficiency of the technique. In addition, an incremental feature selection method is proposed that dynamically determines the threshold between relevant and irrelevant features. Experimental results demonstrating the high accuracy of MReC-DFS compared with state-of-the-art techniques on a variety of real datasets are presented. The results also show the superior memory efficiency of MReC-DFS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AUTOFLY-Aid Project aims to develop and demonstrate novel automation support algorithms and tools to the flight crew for flight critical collision avoidance using “dynamic 4D trajectory management”. The automation support system is envisioned to improve the primary shortcomings of TCAS, and to aid the pilot through add-on avionics/head-up displays and reality augmentation devices in dynamically evolving collision avoidance scenarios. The main theoretical innovative and novel concepts to be developed by AUTOFLY-Aid project are a) design and development of the mathematical models of the full composite airspace picture from the flight deck’s perspective, as seen/measured/informed by the aircraft flying in SESAR 2020, b) design and development of a dynamic trajectory planning algorithm that can generate at real-time (on the order of seconds) flyable (i.e. dynamically and performance-wise feasible) alternative trajectories across the evolving stochastic composite airspace picture (which includes new conflicts, blunder risks, terrain and weather limitations) and c) development and testing of the Collision Avoidance Automation Support System on a Boeing 737 NG FNPT II Flight Simulator with synthetic vision and reality augmentation while providing the flight crew with quantified and visual understanding of collision risks in terms of time and directions and countermeasures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adaptive hardware requires some reconfiguration capabilities. FPGAs with native dynamic partial reconfiguration (DPR) support pose a dilemma for system designers: whether to use native DPR or to build a virtual reconfigurable circuit (VRC) on top of the FPGA which allows selecting alternative functions by a multiplexing scheme. This solution allows much faster reconfiguration, but with higher resource overhead. This paper discusses the advantages of both implementations for a 2D image processing matrix. Results show how higher operating frequency is obtained for the matrix using DPR. However, this is compensated in the VRC during evolution due to the comparatively negligible reconfiguration time. Regarding area, the DPR implementation consumes slightly more resources due to the reconfiguration engine, but adds further more capabilities to the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of nuclear power plant has to follow a number of regulations aimed at limiting the risks inherent in this type of installation. The goal is to prevent and to limit the consequences of any possible incident that might threaten the public or the environment. To verify that the safety requirements are met a safety assessment process is followed. Safety analysis is as key component of a safety assessment, which incorporates both probabilistic and deterministic approaches. The deterministic approach attempts to ensure that the various situations, and in particular accidents, that are considered to be plausible, have been taken into account, and that the monitoring systems and engineered safety and safeguard systems will be capable of ensuring the safety goals. On the other hand, probabilistic safety analysis tries to demonstrate that the safety requirements are met for potential accidents both within and beyond the design basis, thus identifying vulnerabilities not necessarily accessible through deterministic safety analysis alone. Probabilistic safety assessment (PSA) methodology is widely used in the nuclear industry and is especially effective in comprehensive assessment of the measures needed to prevent accidents with small probability but severe consequences. Still, the trend towards a risk informed regulation (RIR) demanded a more extended use of risk assessment techniques with a significant need to further extend PSA’s scope and quality. Here is where the theory of stimulated dynamics (TSD) intervenes, as it is the mathematical foundation of the integrated safety assessment (ISA) methodology developed by the CSN(Consejo de Seguridad Nuclear) branch of Modelling and Simulation (MOSI). Such methodology attempts to extend classical PSA including accident dynamic analysis, an assessment of the damage associated to the transients and a computation of the damage frequency. The application of this ISA methodology requires a computational framework called SCAIS (Simulation Code System for Integrated Safety Assessment). SCAIS provides accident dynamic analysis support through simulation of nuclear accident sequences and operating procedures. Furthermore, it includes probabilistic quantification of fault trees and sequences; and integration and statistic treatment of risk metrics. SCAIS comprehensively implies an intensive use of code coupling techniques to join typical thermal hydraulic analysis, severe accident and probability calculation codes. The integration of accident simulation in the risk assessment process and thus requiring the use of complex nuclear plant models is what makes it so powerful, yet at the cost of an enormous increase in complexity. As the complexity of the process is primarily focused on such accident simulation codes, the question of whether it is possible to reduce the number of required simulation arises, which will be the focus of the present work. This document presents the work done on the investigation of more efficient techniques applied to the process of risk assessment inside the mentioned ISA methodology. Therefore such techniques will have the primary goal of decreasing the number of simulation needed for an adequate estimation of the damage probability. As the methodology and tools are relatively recent, there is not much work done inside this line of investigation, making it a quite difficult but necessary task, and because of time limitations the scope of the work had to be reduced. Therefore, some assumptions were made to work in simplified scenarios best suited for an initial approximation to the problem. The following section tries to explain in detail the process followed to design and test the developed techniques. Then, the next section introduces the general concepts and formulae of the TSD theory which are at the core of the risk assessment process. Afterwards a description of the simulation framework requirements and design is given. Followed by an introduction to the developed techniques, giving full detail of its mathematical background and its procedures. Later, the test case used is described and result from the application of the techniques is shown. Finally the conclusions are presented and future lines of work are exposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a methodology is proposed to find the dynamic poles of a capacitive pressure transmitter in order to enhance and extend the online surveillance of this type of sensor based on the response time measurement by applying noise analysis techniques and the dynamic data system procedure. Several measurements taken from a pressurized water reactor have been analyzed. The methodology proposes an autoregressive fit whose order is determined by the sensor dynamic poles. Nevertheless, the signals that have been analyzed could not be filtered properly in order to remove the plant noise; thus, this was considered as an additional pair of complex conjugate poles. With this methodology we have come up with the numerical value of the sensor second real pole in spite of its low influence on the sensor dynamic response. This opens up a more accurate online sensor surveillance since the previous methods were achieved by considering one real pole only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an approach to adapt dynamically the language models (LMs) used by a speech recognizer that is part of a spoken dialogue system. We have developed a grammar generation strategy that automatically adapts the LMs using the semantic information that the user provides (represented as dialogue concepts), together with the information regarding the intentions of the speaker (inferred by the dialogue manager, and represented as dialogue goals). We carry out the adaptation as a linear interpolation between a background LM, and one or more of the LMs associated to the dialogue elements (concepts or goals) addressed by the user. The interpolation weights between those models are automatically estimated on each dialogue turn, using measures such as the posterior probabilities of concepts and goals, estimated as part of the inference procedure to determine the actions to be carried out. We propose two approaches to handle the LMs related to concepts and goals. Whereas in the first one we estimate a LM for each one of them, in the second one we apply several clustering strategies to group together those elements that share some common properties, and estimate a LM for each cluster. Our evaluation shows how the system can estimate a dynamic model adapted to each dialogue turn, which helps to improve the performance of the speech recognition (up to a 14.82% of relative improvement), which leads to an improvement in both the language understanding and the dialogue management tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systems used for target localization, such as goods, individuals, or animals, commonly rely on operational means to meet the final application demands. However, what would happen if some means were powered up randomly by harvesting systems? And what if those devices not randomly powered had their duty cycles restricted? Under what conditions would such an operation be tolerable in localization services? What if the references provided by nodes in a tracking problem were distorted? Moreover, there is an underlying topic common to the previous questions regarding the transfer of conceptual models to reality in field tests: what challenges are faced upon deploying a localization network that integrates energy harvesting modules? The application scenario of the system studied is a traditional herding environment of semi domesticated reindeer (Rangifer tarandus tarandus) in northern Scandinavia. In these conditions, information on approximate locations of reindeer is as important as environmental preservation. Herders also need cost-effective devices capable of operating unattended in, sometimes, extreme weather conditions. The analyses developed are worthy not only for the specific application environment presented, but also because they may serve as an approach to performance of navigation systems in absence of reasonably accurate references like the ones of the Global Positioning System (GPS). A number of energy-harvesting solutions, like thermal and radio-frequency harvesting, do not commonly provide power beyond one milliwatt. When they do, battery buffers may be needed (as it happens with solar energy) which may raise costs and make systems more dependent on environmental temperatures. In general, given our problem, a harvesting system is needed that be capable of providing energy bursts of, at least, some milliwatts. Many works on localization problems assume that devices have certain capabilities to determine unknown locations based on range-based techniques or fingerprinting which cannot be assumed in the approach considered herein. The system presented is akin to range-free techniques, but goes to the extent of considering very low node densities: most range-free techniques are, therefore, not applicable. Animal localization, in particular, uses to be supported by accurate devices such as GPS collars which deplete batteries in, maximum, a few days. Such short-life solutions are not particularly desirable in the framework considered. In tracking, the challenge may times addressed aims at attaining high precision levels from complex reliable hardware and thorough processing techniques. One of the challenges in this Thesis is the use of equipment with just part of its facilities in permanent operation, which may yield high input noise levels in the form of distorted reference points. The solution presented integrates a kinetic harvesting module in some nodes which are expected to be a majority in the network. These modules are capable of providing power bursts of some milliwatts which suffice to meet node energy demands. The usage of harvesting modules in the aforementioned conditions makes the system less dependent on environmental temperatures as no batteries are used in nodes with harvesters--it may be also an advantage in economic terms. There is a second kind of nodes. They are battery powered (without kinetic energy harvesters), and are, therefore, dependent on temperature and battery replacements. In addition, their operation is constrained by duty cycles in order to extend node lifetime and, consequently, their autonomy. There is, in turn, a third type of nodes (hotspots) which can be static or mobile. They are also battery-powered, and are used to retrieve information from the network so that it is presented to users. The system operational chain starts at the kinetic-powered nodes broadcasting their own identifier. If an identifier is received at a battery-powered node, the latter stores it for its records. Later, as the recording node meets a hotspot, its full record of detections is transferred to the hotspot. Every detection registry comprises, at least, a node identifier and the position read from its GPS module by the battery-operated node previously to detection. The characteristics of the system presented make the aforementioned operation own certain particularities which are also studied. First, identifier transmissions are random as they depend on movements at kinetic modules--reindeer movements in our application. Not every movement suffices since it must overcome a certain energy threshold. Second, identifier transmissions may not be heard unless there is a battery-powered node in the surroundings. Third, battery-powered nodes do not poll continuously their GPS module, hence localization errors rise even more. Let's recall at this point that such behavior is tight to the aforementioned power saving policies to extend node lifetime. Last, some time is elapsed between the instant an identifier random transmission is detected and the moment the user is aware of such a detection: it takes some time to find a hotspot. Tracking is posed as a problem of a single kinetically-powered target and a population of battery-operated nodes with higher densities than before in localization. Since the latter provide their approximate positions as reference locations, the study is again focused on assessing the impact of such distorted references on performance. Unlike in localization, distance-estimation capabilities based on signal parameters are assumed in this problem. Three variants of the Kalman filter family are applied in this context: the regular Kalman filter, the alpha-beta filter, and the unscented Kalman filter. The study enclosed hereafter comprises both field tests and simulations. Field tests were used mainly to assess the challenges related to power supply and operation in extreme conditions as well as to model nodes and some aspects of their operation in the application scenario. These models are the basics of the simulations developed later. The overall system performance is analyzed according to three metrics: number of detections per kinetic node, accuracy, and latency. The links between these metrics and the operational conditions are also discussed and characterized statistically. Subsequently, such statistical characterization is used to forecast performance figures given specific operational parameters. In tracking, also studied via simulations, nonlinear relationships are found between accuracy and duty cycles and cluster sizes of battery-operated nodes. The solution presented may be more complex in terms of network structure than existing solutions based on GPS collars. However, its main gain lies on taking advantage of users' error tolerance to reduce costs and become more environmentally friendly by diminishing the potential amount of batteries that can be lost. Whether it is applicable or not depends ultimately on the conditions and requirements imposed by users' needs and operational environments, which is, as it has been explained, one of the topics of this Thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When the fresh fruit reaches the final markets from the suppliers, its quality is not always as good as it should, either because it has been mishandled during transportation or because it lacks an adequate quality control at the producer level, before being shipped. This is why it is necessary for the final markets to establish their own quality assessment system if they want to ensure to their customers the quality they want to sell. In this work, a system to control fruit quality at the last level of the distribution channel has been designed. The system combines rapid control techniques with laboratory equipment and statistical sampling protocols, to obtain a dynamic, objective process, which can substitute advantageously the quality control inspections carried out visually by human experts at the reception platform of most hypermarkets. Portable measuring equipment have been chosen (firmness tester, temperature and humidity sensors...) as well as easy-to-use laboratory equipment (texturometer, colorimeter, refractometer..,) combining them to control the most important fruit quality parameters (firmness, colour, sugars, acids). A complete computer network has been designed to control all the processes and store the collected data in real time, and to perform the computations. The sampling methods have been also defined to guarantee the confidence of the results. Some of the advantages of a quality assessment system as the proposed one are: the minimisation of human subjectivity, the ability to use modern measuring techniques, and the possibility of using it also as a supplier's quality control system. It can be also a way to clarify the quality limits of fruits among members of the commercial channel, as well as the first step in the standardisation of quality control procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To perceive a coherent environment, incomplete or overlapping visual forms must be integrated into meaningful coherent percepts, a process referred to as ?Gestalt? formation or perceptual completion. Increasing evidence suggests that this process engages oscillatory neuronal activity in a distributed neuronal assembly. A separate line of evidence suggests that Gestalt formation requires top-down feedback from higher order brain regions to early visual cortex. Here we combine magnetoencephalography (MEG) and effective connectivity analysis in the frequency domain to specifically address the effective coupling between sources of oscillatory brain activity during Gestalt formation. We demonstrate that perceptual completion of two-tone ?Mooney? faces induces increased gamma frequency band power (55?71 Hz) in human early visual, fusiform and parietal cortices. Within this distributed neuronal assembly fusiform and parietal gamma oscillators are coupled by forward and backward connectivity during Mooney face perception, indicating reciprocal influences of gamma activity between these higher order visual brain regions. Critically, gamma band oscillations in early visual cortex are modulated by top-down feedback connectivity from both fusiform and parietal cortices. Thus, we provide a mechanistic account of Gestalt perception in which gamma oscillations in feature sensitive and spatial attention-relevant brain regions reciprocally drive one another and convey global stimulus aspects to local processing units at low levels of the sensory hierarchy by top-down feedback. Our data therefore support the notion of inverse hierarchical processing within the visual system underlying awareness of coherent percepts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is related to the output impedance improvement of a Multiphase Buck converter with Peak Current Mode Control (PCMC) by means of introducing an additional power path that virtually increases the output capacitance during transients. Various solutions that can be employed to improve the dynamic behavior of the converter system exist, but nearly all solutions are developed for a Single Phase Buck converter with Voltage Mode Control (VMC), while in the VRM applications, due to the high currents, the system is usually implemented as a Multiphase Buck Converter with Current Mode Control. The additional energy path, as presented here, is introduced with the Output Impedance Correction Circuit (OICC) based on the Controlled Current Source (CCS). The OICC is used to inject or extract a current n-1 times larger than the output capacitor current, thus virtually increasing n times the value of the output capacitance during the transients. Furthermore, this work extends the OICC concept to a Multiphase Buck Converter system while comparing proposed solution with the system that has n times bigger output capacitor. In addition, the OICC is implemented as a Synchronous Buck Converter with PCMC, thus reducing its influence on the system efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, an architecture based on a scalable and flexible set of Evolvable Processing arrays is presented. FPGA-native Dynamic Partial Reconfiguration (DPR) is used for evolution, which is done intrinsically, letting the system to adapt autonomously to variable run-time conditions, including the presence of transient and permanent faults. The architecture supports different modes of operation, namely: independent, parallel, cascaded or bypass mode. These modes of operation can be used during evolution time or during normal operation. The evolvability of the architecture is combined with fault-tolerance techniques, to enhance the platform with self-healing features, making it suitable for applications which require both high adaptability and reliability. Experimental results show that such a system may benefit from accelerated evolution times, increased performance and improved dependability, mainly by increasing fault tolerance for transient and permanent faults, as well as providing some fault identification possibilities. The evolvable HW array shown is tailored for window-based image processing applications.