959 resultados para type VI collagen
Resumo:
Background and aims. Diabetic dyslipidemia is a highly atherogenic triad of increased triglycerides, decreased HDL cholesterol, and small dense LDL. Fibrates have a beneficial effect on diabetic dyslipidemia, and they have reduced cardiovascular events in randomized trials. Fenofibrate has reduced albuminuria and markers of low-grade inflammation and endothelial dysfunction. The present studies were undertaken to characterize the alterations of VLDL and LDL subclasses and to investigate the binding of LDL to arterial wall in type 2 diabetes. Further purpose was to elucidate the effects of fenofibrate on several lipoprotein subclasses, augmentation index (AIx), carotid intima-media thickness (IMT), and renal function. Subjects. 239 type 2 diabetic subjects were recruited among participants of the FIELD (Fenofibrate Intervention and Event Lowering in Diabetes) study at the Helsinki centre. The patients were randomized to fenofibrate (200mg/d) or placebo for 5 years. Additionally, a healthy control group (N = 93) was recruited. Results. VLDL1 triglycerides increased in similar proportion to total triglycerides in type 2 diabetic patients and control subjects. Despite the increase in total apoCIII levels, VLDL apoCIII was decreased in diabetic patients. Enrichment of LDL with apoCIII induced a small increase in binding of LDL to arterial wall proteoglycan. Intrinsic characteristics of diabetic LDL, rather than levels of apoCIII, were responsible for increased proteoglycan binding of diabetic LDL with high apoCIII. Fenofibrate reduced triglycerides, increased LDL size, and shifted HDL subclasses towards smaller particles with no change in levels of HDL cholesterol. High levels of homocysteine were associated with lower increase of HDL cholesterol and apoA-I during fenofibrate treatment. Long-term fenofibrate treatment did not improve IMT, AIx, inflammation, or endothelial function. Fenofibrate decreased creatinine clearance and estimated glomerular filtration rate. No effect on albuminuria was seen with fenofibrate. Instead, Cystatin C was increased during fenofibrate treatment. Conclusions. 1) Elevation of VLDL 1 triglycerides was the major determinant of plasma triglyceride concentration in control subjects and type 2 diabetic patients. 2) LDL with high apoCIII showed multiple atherogenic properties, that were only partially mediated by apoCIII per se in type 2 diabetes 3) Fenofibrate demonstrated no effect on surrogate markers of atherosclerosis. 4) Fenofibrate had no effect on albuminuria and the observed decrease in markers of renal function could complicate the clinical surveillance of the patients. 5) Fenofibrate can be used to treat severe hypertriglyceridemia or in combination therapy with statins, but not to increase HDL levels.
Resumo:
Klinefelter syndrome (KS) is the most frequent karyotype disorder of male reproductive function. Since its original clinical description in 1942 and the identification of its chromosomal basis 47,XXY in 1959, the typical KS phenotype has become well recognized, but the mechanisms behind the testicular degeneration process have remained unrevealed. This prospective study was undertaken to increase knowledge about testicular function in adolescent KS boys. It comprised a longitudinal follow-up of growth, pubertal development, and serum reproductive hormone levels in 14 prepubertal and pubertal KS boys. Each boy had a testicular biopsy that was analyzed with histomorphometric and immunohistochemical methods. The KS boys had sufficient testosterone levels to allow normal onset and progression of puberty. Their serum testosterone levels remained within the low-normal range throughout puberty, but from midpuberty onwards, findings like a leveling-off in testosterone and insulin-like factor 3 (INSL3) concentrations, high gonadotropin levels, and exaggerated responses to gonadotropin-releasing hormone stimulation suggest diminished testosterone secretion. We also showed that the Leydig cell differentiation marker INSL3 may serve as a novel marker for onset and normal progression of puberty in boys. In the KS boys the number of germ cells was already markedly lower at the onset of puberty. The pubertal activation of the pituitary-testicular axis accelerated germ cell depletion, and germ cell differentiation was at least partly blocked at the spermatogonium or early primary spermatocyte stages. The presence of germ cells correlated with serum reproductive hormone levels. The immature Sertoli cells were incapable of transforming to the adult type, and during puberty the degeneration of Sertoli cells increased markedly. The older KS boys displayed an evident Leydig cell hyperplasia, as well as fibrosis and hyalinization of the interstitium and peritubular connective tissue. Altered immunoexpression of the androgen receptor (AR) suggested that in KS boys during puberty a relative androgen deficiency develops at testicular level. The impact of genetic features of the supernumerary X chromosome on the KS phenotype was also studied. The present study suggests that parental origin of the supernumerary X chromosome and the length of the CAG repeat of the AR gene influence pubertal development and testicular degeneration. The current study characterized by several means the testicular degeneration process in the testes of adolescent KS boys and confirmed that this process accelerates at the onset of puberty. Although serum reproductive hormone levels indicated no hypogonadism during early puberty, the histological analyses showed an already markedly reduced fertility potential in prepubertal KS boys. Genetic features of the X chromosome affect the KS phenotype.
Resumo:
The metabolic syndrome and type 1 diabetes are associated with brain alterations such as cognitive decline brain infarctions, atrophy, and white matter lesions. Despite the importance of these alterations, their pathomechanism is still poorly understood. This study was conducted to investigate brain glucose and metabolites in healthy individuals with an increased cardiovascular risk and in patients with type 1 diabetes in order to discover more information on the nature of the known brain alterations. We studied 43 20- to 45-year-old men. Study I compared two groups of non-diabetic men, one with an accumulation of cardiovascular risk factors and another without. Studies II to IV compared men with type 1 diabetes (duration of diabetes 6.7 ± 5.2 years, no microvascular complications) with non-diabetic men. Brain glucose, N-acetylaspartate (NAA), total creatine (tCr), choline, and myo-inositol (mI) were quantified with proton magnetic resonance spectroscopy in three cerebral regions: frontal cortex, frontal white matter, thalamus, and in cerebellar white matter. Data collection was performed for all participants during fasting glycemia and in a subgroup (Studies III and IV), also during a hyperglycemic clamp that increased plasma glucose concentration by 12 mmol/l. In non-diabetic men, the brain glucose concentration correlated linearly with plasma glucose concentration. The cardiovascular risk group (Study I) had a 13% higher plasma glucose concentration than the control group, but no difference in thalamic glucose content. The risk group thus had lower thalamic glucose content than expected. They also had 17% increased tCr (marker of oxidative metabolism). In the control group, tCr correlated with thalamic glucose content, but in the risk group, tCr correlated instead with fasting plasma glucose and 2-h plasma glucose concentration in the oral glucose tolerance test. Risk factors of the metabolic syndrome, most importantly insulin resistance, may thus influence brain metabolism. During fasting glycemia (Study II), regional variation in the cerebral glucose levels appeared in the non-diabetic subjects but not in those with diabetes. In diabetic patients, excess glucose had accumulated predominantly in the white matter where the metabolite alterations were also the most pronounced. Compared to the controls values, the white matter NAA (marker of neuronal metabolism) was 6% lower and mI (glia cell marker) 20% higher. Hyperglycemia is therefore a potent risk factor for diabetic brain disease and the metabolic brain alterations may appear even before any peripheral microvascular complications are detectable. During acute hyperglycemia (Study III), the increase in cerebral glucose content in the patients with type 1 diabetes was, dependent on brain region, between 1.1 and 2.0 mmol/l. An every-day hyperglycemic episode in a diabetic patient may therefore as much as double brain glucose concentration. While chronic hyperglycemia had led to accumulation of glucose in the white matter, acute hyperglycemia burdened predominantly the gray matter. Acute hyperglycemia also revealed that chronic fluctuation in blood glucose may be associated with alterations in glucose uptake or in metabolism in the thalamus. The cerebellar white matter appeared very differently from the cerebral (Study IV). In the non-diabetic men it contained twice as much glucose as the cerebrum. Diabetes had altered neither its glucose content nor the brain metabolites. The cerebellum seems therefore more resistant to the effects of hyperglycemia than is the cerebrum.
Resumo:
Background: The gene encoding for uncoupling protein-1 (UCP1) is considered to be a candidate gene for type 2 diabetes because of its role in thermogenesis and energy expenditure. The objective of the study was to examine whether genetic variations in the UCP1 gene are associated with type 2 diabetes and its related traits in Asian Indians. Methods: The study subjects, 810 type 2 diabetic subjects and 990 normal glucose tolerant (NGT) subjects, were chosen from the Chennai Urban Rural Epidemiological Study (CURES), an ongoing population-based study in southern India. The polymorphisms were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Linkage disequilibrium (LD) was estimated from the estimates of haplotypic frequencies. Results: The three polymorphisms, namely -3826A -> G, an A -> C transition in the 5'-untranslated region (UTR) and Met229Leu, were not associated with type 2 diabetes. However, the frequency of the A-C-Met (-3826A -> G-5'UTR A -> C-Met229Leu) haplotype was significantly higher among the type 2 diabetic subjects (2.67%) compared with the NGT subjects (1.45%, P < 0.01). The odds ratio for type 2 diabetes for the individuals carrying the haplotype A-C-Met was 1.82 (95% confidence interval, 1.29-2.78, P = 0.009). Conclusions: The haplotype, A-C-Met, in the UCP1 gene is significantly associated with the increased genetic risk for developing type 2 diabetes in Asian Indians.
Resumo:
The intervertebral disc is composed of concentrically arranged components: annulus fibrosus, the transition zone, and central nucleus pulposus. The major disc cell type differs in various parts of the intervertebral disc. In annulus fibrosus a spindle shaped fibroblast-like cell mainly dominates, whereas in central nucleus pulposus the more rounded chondrocyte-like disc cell is the major cell type. At birth the intervertebral disc is well vascularized, but during childhood and adolescence blood vessels become smaller and less numerous. The adult intervertebral disc is avascular and is nourished via the cartilage endplates. On the other hand, degenerated and prolapsed intervertebral discs are again vascularized, and show many changes compared to normal discs, including: nerve ingrowth, change in collagen turnover, and change in water content. Furthermore, the prolapsed intervertebral disc tissue has a tendency to decrease in size over time. Growth factors are polypeptides which regulate cell growth, extracellular matrix protease activity, and vascularization. Oncoproteins c-Fos and c-Jun heterodimerize, forming the AP-1 transcription factor which is expressed in activated cells. In this thesis the differences of growth factor expression in normal intervertebral disc, the degenerated intervertebral disc and herniated intervertebral disc were analyzed. Growth factors of particular interest were basic fibroblast growth factor (bFGF or FGF-2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and transforming growth factor beta (TGFβ). Cell activation was visualized by the expression of the AP-1 transcription promoters c-Fos and c-Jun. The expression was shown with either mono- or polyclonal antibodies by indirect avidin-biotin-peroxidase immunohistochemical staining method. The normal control material was collected from a tissue bank of five organ donors. The degenerated disc material was from twelve patients operated on for painful degenerative disc disease, and herniated disc tissue material was obtained from 115 patients operated on for sciatica. Normal control discs showed only TGFβ immunopositivity. All other factors studied were immunonegative in the control material. Prolapsed disc material was immunopositive for all factors studied, and this positivity was located either in the disc cells or in blood vessels. Furthermore, neovascularization was noted. Disc cell immunoreaction was shown in chondrocyte-like disc cells or in fibroblast-like disc cells, the former being expressed especially in conglomerates (clusters of disc cells). TGFβ receptor induction was prominent in prolapsed intervertebral disc tissue. In degenerated disc material, the expression of growth factors was analyzed in greater detail in various parts of the disc: nucleus pulposus, anterior annulus fibrosus and posterior annulus fibrosus. PDGF did not show any immunoreactivity, whereas all other studied growth factors were localized either in chondrocyte-like disc cells, often forming clusters, in fibroblast-like disc cells, or in small capillaries. Many of the studied degenerated discs showed tears in the posterior region of annulus fibrosus, but expression of immunopositive growth factors was detected throughout the entire disc. Furthermore, there was a difference in immunopositive cell types for different growth factors. The main conclusion of the thesis, supported by all substudies, is the occurrence of growth factors in disc cells. They may be actively participating in a network regulating disc cell growth, proliferation, extracellular matrix turnover, and neovascularization. Chondrocyte-like disc cells, in particular, expressed growth factors and oncoproteins, highlighting the importance of this cell type in the basic pathophysiologic events involved in disc degeneration and disc rearrangement. The thesis proposes a hypothesis for cellular remodelling in intervertebral disc tissue. In summary, the model presents an activation pattern of different growth factors at different intervertebral disc stages, mechanisms leading to neovascularization of the intervertebral disc in pathological conditions, and alteration of disc cell shape, especially in annulus fibrosus. Chondrocyte-like disc cells become more numerous, and these cells are capable of forming clusters, which appear to be regionally active within the disc. The alteration of the phenotype of disc cells expressing growth factors from fibroblast-like disc cells to chondrocyte-like cells in annulus fibrosus, and the numerous expression of growth factor expressing disc cells in nucleus pulposus, may be a key element both during pathological degeneration of the intervertebral disc, and during the healing process after trauma.
Resumo:
Congenital nephrotic syndrome of the Finnish type (NPHS1) is an autosomal recessive disease which is highly enriched in the Finnish population. It is caused by mutations in the NPHS1 gene encoding for nephrin, which is a major component of the glomerular filtration barrier in the kidney. Patients with NPHS1 have heavy proteinuria and nephrotic syndrome (NS) from birth and develop renal fibrosis in early childhood. Renal transplantation (TX) is the only curative treatment for NPHS1. These patients form the largest group of pediatric kidney transplant children in our country. The NPHS1 kidneys are removed in infancy and they serve as an excellent human material for studies of the pathophysiology of proteinuric kidney diseases. Sustained proteinuria is a major factor leading to end-stage renal failure and understanding this process is crucial for nephrology. In this study we investigated the glomerular and tubulointerstitial changes that occur in the NPHS1 kidneys during infancy as well as the expression of nephrin in non-renal tissues. We also studied the pathology and management of recurrent proteinuria in kidney grafts transplanted to NPHS1 children. Severe renal lesions evolved in patients with NPHS1 during the first months of life. Glomerular sclerosis developed through progressive mesangial sclerosis, and capillary obliteration was an early consequence of this process. Shrinkage of the glomerular tuft was common, whereas occlusion of tubular opening or protrusion of the glomerular tuft into subepithelial space or through the Bowman's capsule were not detected. Few inflammatory cells were detected in the mesangial area. The glomerular epithelial cells (podocytes) showed severe ultrastructural changes and hypertrophy. Podocyte proliferation and apoptosis were rare, but moderate amounts of podocytes were detached and ended up in the urine. The results showed that endocapillary lesions not extracapillary lesions, as generally believed were important for the sclerotic process in the NPHS1 glomeruli. In the tubulointerstitium, severe lesions developed in NPHS1 kidneys during infancy. Despite heavy proteinuria, tubular epithelial cells (TECs) did not show transition into myofibroblasts. The most abundant chemokines in NPHS1 tissue were neutrophil activating protein-2 (NAP-2), macrophage inhibiting factor (MIF), and monocyte chemoattractant protein-1 (MCP-1). Interstitial inflammation and fibrosis were first detected in the paraglomerular areas and the most abundant inflammatory cells were monocytes/macrophages. Arteries and arterioles showed intimal hypertrophy, but the pericapillary microvasculature remained quite normal. However, excessive oxidative stress was evident in NPHS1 kidneys. The results indicated that TECs were relatively resistant to the heavy tubular protein load. Nephrin was at first thought to be podocyte specific, but some studies especially in experimental animals have suggested that nephrin might also be expressed in non-renal tissues such as pancreas and central nervous system. The knowledge of nephrin biology is important for the evaluation of nephrin related diseases. In our study, no significant amounts of nephrin protein or mRNA were detected in non-renal tissues of man and pig as studied by immunohistochemistry and in situ hybridization. The phenotype analysis of NPHS1 children, who totally lack nephrin, revealed no marked impairment in the neurological, testicular, or pancreatic function speaking against the idea that nephrin would play an important functional role outside the kidney. The NPHS1 kidneys do not express nephrin and antibodies against this major glomerular filter protein have been observed in NPHS1 children after renal TX most likely as an immune reaction against a novel antigen. These antibodies have been associated with the development of recurrent NS in the kidney graft of NPHS1 patients. In our study, a third of the NPHS1 patients homozygous for Fin-Major mutation developed recurrent NS in the transplanted graft. Re-transplantations were performed to patients who lost their graft due to recurrent NS and heavy proteinuria immediately developed in all cases. While 73% of the patients had detectable serum anti-nephrin antibodies, the kidney biopsy findings were minimal. Introduction of plasma exchange (PE) to the treatment of recurrent nephroses increased the remission rate from 54% to 89%. If remission was achieved, recurrent NS did not significantly deteriorate the long term graft function. In conclusion, the results show that the lack of nephrin in podocyte slit diaphragm in NPHS1 kidneys induces progressive mesangial expansion and glomerular capillary obliteration and inflicts interstitial fibrosis, inflammation, and oxidative stress with surprisingly little involvement of the TECs in this process. Nephrin appears to have no clinical significance outside the kidney. Development of antibodies against nephrin seems to be a major cause of recurrent NS in kidney grafts of NPHS1 patients and combined use of PE and cyclophosphamide markedly improved remission rates.
Resumo:
We propose two algorithms for Q-learning that use the two-timescale stochastic approximation methodology. The first of these updates Q-values of all feasible state–action pairs at each instant while the second updates Q-values of states with actions chosen according to the ‘current’ randomized policy updates. A proof of convergence of the algorithms is shown. Finally, numerical experiments using the proposed algorithms on an application of routing in communication networks are presented on a few different settings.