931 resultados para two-dimensional soliton


Relevância:

90.00% 90.00%

Publicador:

Resumo:

On the basis of previous works, the strange attractor in real physical systems is discussed. Louwerier attractor is used as an example to illustrate the geometric structure and dynamical properties of strange attractor. Then the strange attractor of a kind of two-dimensional map is analysed. Based on some conditions, it is proved that the closure of the unstable manifolds of hyberbolic fixed point of map is a strange attractor in real physical systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The starting process of two-dimensional nozzle flows has been simulated with Euler, laminar and k - g two-equation turbulence Navier-Stokes equations. The flow solver is based on a combination of LUSGS subiteration implicit method and five spatial discretized schemes, which are Roe, HLLE, MHLLE upwind schemes and AUSM+, AUSMPW schemes. In the paper, special attention is for the flow differences of the nozzle starting process obtained from different governing equations and different schemes. Two nozzle flows, previously investigated experimentally and numerically by other researchers, are chosen as our examples. The calculated results indicate the carbuncle phenomenon and unphysical oscillations appear more or less near a wall or behind strong shock wave except using HLLE scheme, and these unphysical phenomena become more seriously with the increase of Mach number. Comparing the turbulence calculation, inviscid solution cannot simulate the wall flow separation and the laminar solution shows some different flow characteristics in the regions of flow separation and near wall.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is a clear need to develop fisheries independent methods to quantify individual sizes, density, and three dimensional characteristics of reef fish spawning aggregations for use in population assessments and to provide critical baseline data on reproductive life history of exploited populations. We designed, constructed, calibrated, and applied an underwater stereo-video system to estimate individual sizes and three dimensional (3D) positions of Nassau grouper (Epinephelus striatus) at a spawning aggregation site located on a reef promontory on the western edge of Little Cayman Island, Cayman Islands, BWI, on 23 January 2003. The system consists of two free-running camcorders mounted on a meter-long bar and supported by a SCUBA diver. Paired video “stills” were captured, and nose and tail of individual fish observed in the field of view of both cameras were digitized using image analysis software. Conversion of these two dimensional screen coordinates to 3D coordinates was achieved through a matrix inversion algorithm and calibration data. Our estimate of mean total length (58.5 cm, n = 29) was in close agreement with estimated lengths from a hydroacoustic survey and from direct measures of fish size using visual census techniques. We discovered a possible bias in length measures using the video method, most likely arising from some fish orientations that were not perpendicular with respect to the optical axis of the camera system. We observed 40 individuals occupying a volume of 33.3 m3, resulting in a concentration of 1.2 individuals m–3 with a mean (SD) nearest neighbor distance of 70.0 (29.7) cm. We promote the use of roving diver stereo-videography as a method to assess the size distribution, density, and 3D spatial structure of fish spawning aggregations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of the mixing of pulsed two color fields on the generation of an isolated attosecond pulse has been systematically investigated. One main color is 800 nm and the other color (or secondary color) is varied from 1.2 to 2.4 mu m. This work shows that the continuum length behaves in a similar way to the behavior of the difference in the square of the amplitude of the strongest and next strongest cycle. As the mixing ratio is increased, the optimal wavelength for the extended continuum shifts toward shorter wavelength side. There is a certain mixing ratio of intensities at which the continuum length bifurcates, i.e., the existence of two optimal wavelengths. As the mixing ratio is further increased, each branch bifurcates again into two sub-branches. This 2D map analysis of the mixing ratio and the wavelength of the secondary field easily allows one to select a proper wavelength and the mixing ratio for a given pulse duration of the primary field. The study shows that an isolated sub-100 attosecond pulse can be generated mixing an 11 fs full-width-half-maximum (FWHM), 800 laser pulse with an 1840 nm FWHM pulse. Furthermore the result reveals that a 33 fs FWHM, 800 nm pulse can produce an isolated pulse below 200 as, when properly mixed. (c) 2008 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of Ring Opening Metathesis Polymerization has allowed the world of block copolymers to expand into brush block copolymers. Brush block copolymers consist of a polymer backbone with polymeric side chains, forcing the backbone to hold a stretched conformation and giving it a worm-like shape. These brush block copolymers have a number of advantages over tradition block copolymers, including faster self-assembly behavior, larger domain sizes, and much less entanglement. This makes them an ideal candidate in the development of a bottom-up approach to forming photonic crystals. Photonic crystals are periodic nanostructures that transmit and reflect only certain wavelengths of light, forming a band gap. These are used in a number of coatings and other optical uses. One and two dimensional photonic crystals are commercially available, though are often expensive and difficult to manufacture. Previous work has focused on the creation of one dimensional photonic crystals from brush block copolymers. In this thesis, I will focus on the synthesis and characterization of asymmetric brush block copolymers for self-assembly into two and three dimensional photonic crystals. Three series of brush block copolymers were made and characterized by Gel Permeation Chromatography and Nuclear Magnetic Resonance spectroscopy. They were then made into films through compressive thermal annealing and characterized by UV-Vis Spectroscopy and Scanning Electron Microscopy. Evidence of non-lamellar structures were seen, indicating the first reported creation of two or three dimensional photonic crystals from brush block copolymers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Northridge earthquake of January 17, 1994, highlighted the two previously known problems of premature fracturing of connections and the damaging capabilities of near-source ground motion pulses. Large ground motions had not been experienced in a city with tall steel moment-frame buildings before. Some steel buildings exhibited fracture of welded connections or other types of structural degradation.

A sophisticated three-dimensional nonlinear inelastic program is developed that can accurately model many nonlinear properties commonly ignored or approximated in other programs. The program can assess and predict severely inelastic response of steel buildings due to strong ground motions, including collapse.

Three-dimensional fiber and segment discretization of elements is presented in this work. This element and its two-dimensional counterpart are capable of modeling various geometric and material nonlinearities such as moment amplification, spread of plasticity and connection fracture. In addition to introducing a three-dimensional element discretization, this work presents three-dimensional constraints that limit the number of equations required to solve various three-dimensional problems consisting of intersecting planar frames.

Two buildings damaged in the Northridge earthquake are investigated to verify the ability of the program to match the level of response and the extent and location of damage measured. The program is used to predict response of larger near-source ground motions using the properties determined from the matched response.

A third building is studied to assess three-dimensional effects on a realistic irregular building in the inelastic range of response considering earthquake directivity. Damage levels are observed to be significantly affected by directivity and torsional response.

Several strong recorded ground motions clearly exceed code-based levels. Properly designed buildings can have drifts exceeding code specified levels due to these ground motions. The strongest ground motions caused collapse if fracture was included in the model. Near-source ground displacement pulses can cause columns to yield prior to weaker-designed beams. Damage in tall buildings correlates better with peak-to-peak displacements than with peak-to-peak accelerations.

Dynamic response of tall buildings shows that higher mode response can cause more damage than first mode response. Leaking of energy between modes in conjunction with damage can cause torsional behavior that is not anticipated.

Various response parameters are used for all three buildings to determine what correlations can be made for inelastic building response. Damage levels can be dramatically different based on the inelastic model used. Damage does not correlate well with several common response parameters.

Realistic modeling of material properties and structural behavior is of great value for understanding the performance of tall buildings due to earthquake excitations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A uniform submicron periodic square structure was fabricated on the surface of ZnO by a technique of two linearly polarized femtosecond laser beams with orthogonal polarizations ablating material alternately. The formed two-dimensional ordering submicron structure consists of close-packed submicron squares with a spacial periodicity of 290 nm, which arises from the intercrossing of two orthogonal submicron ripple structures induced by the two beams respectively. The result demonstrates a noninterference effect of two-beam ablation based on the alternate technique, which should come from the polarization-dependent enhancement of the subwavelength ripple structure and the large interval of two alternate pulses. This two-beam alternate ablation technique is expected to open up prospects for the submicron fabrication of wide-bandgap materials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Let L be the algebra of all linear transformations on an n-dimensional vector space V over a field F and let A, B, ƐL. Let Ai+1 = AiB - BAi, i = 0, 1, 2,…, with A = Ao. Let fk (A, B; σ) = A2K+1 - σ1A2K-1 + σ2A2K-3 -… +(-1)KσKA1 where σ = (σ1, σ2,…, σK), σi belong to F and K = k(k-1)/2. Taussky and Wielandt [Proc. Amer. Math. Soc., 13(1962), 732-735] showed that fn(A, B; σ) = 0 if σi is the ith elementary symmetric function of (β4- βs)2, 1 ≤ r ˂ s ≤ n, i = 1, 2, …, N, with N = n(n-1)/2, where β4 are the characteristic roots of B. In this thesis we discuss relations involving fk(X, Y; σ) where X, Y Ɛ L and 1 ≤ k ˂ n. We show: 1. If F is infinite and if for each X Ɛ L there exists σ so that fk(A, X; σ) = 0 where 1 ≤ k ˂ n, then A is a scalar transformation. 2. If F is algebraically closed, a necessary and sufficient condition that there exists a basis of V with respect to which the matrices of A and B are both in block upper triangular form, where the blocks on the diagonals are either one- or two-dimensional, is that certain products X1, X2…Xr belong to the radical of the algebra generated by A and B over F, where Xi has the form f2(A, P(A,B); σ), for all polynomials P(x, y). We partially generalize this to the case where the blocks have dimensions ≤ k. 3. If A and B generate L, if the characteristic of F does not divide n and if there exists σ so that fk(A, B; σ) = 0, for some k with 1 ≤ k ˂ n, then the characteristic roots of B belong to the splitting field of gk(w; σ) = w2K+1 - σ1w2K-1 + σ2w2K-3 - …. +(-1)K σKw over F. We use this result to prove a theorem involving a generalized form of property L [cf. Motzkin and Taussky, Trans. Amer. Math. Soc., 73(1952), 108-114]. 4. Also we give mild generalizations of results of McCoy [Amer. Math. Soc. Bull., 42(1936), 592-600] and Drazin [Proc. London Math. Soc., 1(1951), 222-231].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multi-finger caging offers a rigorous and robust approach to robot grasping. This thesis provides several novel algorithms for caging polygons and polyhedra in two and three dimensions. Caging refers to a robotic grasp that does not necessarily immobilize an object, but prevents it from escaping to infinity. The first algorithm considers caging a polygon in two dimensions using two point fingers. The second algorithm extends the first to three dimensions. The third algorithm considers caging a convex polygon in two dimensions using three point fingers, and considers robustness of this cage to variations in the relative positions of the fingers.

This thesis describes an algorithm for finding all two-finger cage formations of planar polygonal objects based on a contact-space formulation. It shows that two-finger cages have several useful properties in contact space. First, the critical points of the cage representation in the hand’s configuration space appear as critical points of the inter-finger distance function in contact space. Second, these critical points can be graphically characterized directly on the object’s boundary. Third, contact space admits a natural rectangular decomposition such that all critical points lie on the rectangle boundaries, and the sublevel sets of contact space and free space are topologically equivalent. These properties lead to a caging graph that can be readily constructed in contact space. Starting from a desired immobilizing grasp of a polygonal object, the caging graph is searched for the minimal, intermediate, and maximal caging regions surrounding the immobilizing grasp. An example constructed from real-world data illustrates and validates the method.

A second algorithm is developed for finding caging formations of a 3D polyhedron for two point fingers using a lower dimensional contact-space formulation. Results from the two-dimensional algorithm are extended to three dimension. Critical points of the inter-finger distance function are shown to be identical to the critical points of the cage. A decomposition of contact space into 4D regions having useful properties is demonstrated. A geometric analysis of the critical points of the inter-finger distance function results in a catalog of grasps in which the cages change topology, leading to a simple test to classify critical points. With these properties established, the search algorithm from the two-dimensional case may be applied to the three-dimensional problem. An implemented example demonstrates the method.

This thesis also presents a study of cages of convex polygonal objects using three point fingers. It considers a three-parameter model of the relative position of the fingers, which gives complete generality for three point fingers in the plane. It analyzes robustness of caging grasps to variations in the relative position of the fingers without breaking the cage. Using a simple decomposition of free space around the polygon, we present an algorithm which gives all caging placements of the fingers and a characterization of the robustness of these cages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O bi-dimensionalismo epistêmico é a tese de que os estados mentais de um indivíduo tem uma dupla divisão, tendo, então, um conteúdo amplo e um conteúdo estreito. Um conteúdo amplo é aquele cuja determinação depende em parte de propriedades extrínsecas ao sujeito: ou seja, é aquele que possui relação com o mundo externo ao sujeito, seja físico ou social. Já o conteúdo estreito é o conteúdo plenamente determinado por propriedades intrísecas ao sujeito, sem precisar recorrer a nada externo. Este conteúdo estreito será, de acordo com o bi-dimensionalismo de Jackson e de Chalmers, o conteúdo representativo de um estado mental, dado através de descrições sobre aquilo que o sujeito sabe e acredita sobre o mundo ao seu redor. O objetivo desta dissertação ao tratar sobre esta forma de bi-dimensionalismo é o de apresentá-lo como uma possível resposta para dois problemas gerados pela afirmação externalista de que nomes próprios e termos de tipos naturais são designadores rígidos e pela afirmação de que todo conteúdo de um estado mental é amplo. Estes dois problemas são a incompatibilidade do conteúdo amplo com o acesso privilegiado e a sua incompatibilidade com o papel explicatório que estados mentais intencionais parecem ter em relação aos comportamentos de um indivíduo, pois, se os indivíduos não possuem um acesso privilegiado aos conteúdos dos seus estados mentais, tal conteúdo amplo não poderá ser visto como sendo um causalmente relevante para os seus comportamentos. Contudo, os argumentos apresentados pelo externalismo semântico parecem ainda convincentes demais para considerar tais consequências como sendo um bom motivo para se abandonar a tese externalista. Além disso, vários exemplos do funcionamento da linguagem (como os casos do uso de nomes próprios e termos de espécies naturais) parecem indicar que o externalismo semântico é correto. Assim, neste trabalho, analisarei a teoria bi-dimensional à luz das afirmações externalistas sobre o significado e sobre a individuação dos conteúdos dos estados mentais, ou seja, como podendo ser uma teoria que, além de ser uma capaz de fornecer uma resposta viável para estes dois problemas, é também compatível com o conteúdo amplo da forma como é afirmado pelo externalismo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This review is about the development of three-dimensional (3D) ultrasonic medical imaging, how it works, and where its future lies. It assumes knowledge of two-dimensional (2D) ultrasound, which is covered elsewhere in this issue. The three main ways in which 3D ultrasound may be acquired are described: the mechanically swept 3D probe, the 2D transducer array that can acquire intrinsically 3D data, and the freehand 3D ultrasound. This provides an appreciation of the constraints implicit in each of these approaches together with their strengths and weaknesses. Then some of the techniques that are used for processing the 3D data and the way this can lead to information of clinical value are discussed. A table is provided to show the range of clinical applications reported in the literature. Finally, the discussion relating to the technology and its clinical applications to explain why 3D ultrasound has been relatively slow to be adopted in routine clinics is drawn together and the issues that will govern its development in the future explored.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The application of shock control to transonic airfoils and wings has been demonstrated widely to have the potential to reduce wave drag. Most of the suggested control devices are two-dimensional, that is they are of uniform geometry in spanwise direction. Examples of such techniques include contour bumps and passive control. Recently it has been observed that a spanwise array of discrete three-dimensional controls can have similar benefits but also offer advantages in terms of installation complexity and drag. This paper describes research carried out in Cambridge into various three-dimensional devices, such as slots, grooves and bumps. In all cases the control device is applied to the interaction of a normal shock wave (M=1.3) with a turbulent boundary layer. Theoretical considerations are proposed to determine how such fundamental experiments can provide estimates of control performance on a transonic wing. The potential of each class of three-dimensional device for wave drag reduction on airfoils is discussed and surface bumps in particular are identified as offering potential drag savings for typical transonic wing applications under cruise conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Like large insects, micro air vehicles operate at low Reynolds numbers O(1; 000 - 10; 000) in a regime characterized by separated flow and strong vortices. The leading-edge vortex has been identified as a significant source of high lift on insect wings, but the conditions required for the formation of a stably attached leading-edge vortex are not yet known. The waving wing is designed to model the translational phase of an insect wing stroke by preserving the unsteady starting and stopping motion as well as three-dimensionality in both wing geometry (via a finite-span wing) and kinematics (via wing rotation). The current study examines the effect of the spanwise velocity gradient on the development of the leading-edge vortex along the wing as well as the effects of increasing threedimensionalityby decreasing wing aspect ratio from four to two. Dye flow visualization and particle image velocimetry reveal that the leading-edge vortices that form on a sliding or waving wing have a very high aspect ratio. The structure of the flow is largely two-dimensional on both sliding and waving wings and there is minimal interaction between the leading-edge vortices and the tip vortex. Significant spanwise flow was observed on the waving wing but not on the sliding wing. Despite the increased three-dimensionality on the aspect ratio 2 waving wing, there is no evidence of an attached leading-edge vortex and the structure of the flow is very similar to that on the higher-aspect-ratio wing and sliding wing. © Copyright 2010.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vision trackers have been proposed as a promising alternative for tracking at large-scale, congested construction sites. They provide the location of a large number of entities in a camera view across frames. However, vision trackers provide only two-dimensional (2D) pixel coordinates, which are not adequate for construction applications. This paper proposes and validates a method that overcomes this limitation by employing stereo cameras and converting 2D pixel coordinates to three-dimensional (3D) metric coordinates. The proposed method consists of four steps: camera calibration, camera pose estimation, 2D tracking, and triangulation. Given that the method employs fixed, calibrated stereo cameras with a long baseline, appropriate algorithms are selected for each step. Once the first two steps reveal camera system parameters, the third step determines 2D pixel coordinates of entities in subsequent frames. The 2D coordinates are triangulated on the basis of the camera system parameters to obtain 3D coordinates. The methodology presented in this paper has been implemented and tested with data collected from a construction site. The results demonstrate the suitability of this method for on-site tracking purposes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes the implementation of the Boussinesq-type model and extends its application to the tsunami wave runup on the clustered islands (multiple adjacent conical islands), in turn, an extensively validated two-dimensional Boussinesq-type model is employed to examine the interaction between a propagating solitary wave and multiple idealised conical islands, with particular emphasis on a combination effect of two adjustable parameters for spacing interval/diameter ratio between the adjacent conical islands, S/D, and the rotating angle of the structural configuration,θ on maximum soliton runup heights. An extensive parameter study concerning the combination effect of alteringθ and S/D on the maximum soliton runup with the multi-conical islands is subsequently carried out and the distributions of the maximum runup heights on each conical island are obtained and compared for the twin-island cases. The worst case study is performed for each case in respect of the enhancement in the maximum wave runup heights by the multi-conical islands. It is found that the nonlinear wave diffraction, reflection and refraction play a significant role in varying the maximum soliton runup heights on multiconical islands. The comparatively large maximum soliton runups are generally predicted for the merged and bottom mounted clusteredislands. Furthermore, the joints of the clustered-merged islands are demonstrated to suffer the most of the tsunami wave attack. The conical islands that position in the shadow regions behind the surrounding islands are found to withstand relatively less extreme wave impact. Although, these numerical investigations are considerable simplifications of the multi conical islands, they give a critical insight into certain important hydrodynamic characteristics of the interaction between an extreme wave event and a group of clustered conical islands, and thus providing a useful engineering guidance for extreme wave mitigation and coastal development. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE).